RADIO-TV
 EXPERIMENTER

AUG.-SEPT. 75

BUILD THIS 3-TRANSISTOR SHORT-WAVE SET: $\$ 14$

Electronics
Guide to the Fair!

PLANS FOR:
\$2.50 CB Booster
\$7 Scope Calibrator \$4 SCR Dimmer

TEST REPOLIIS:

Shure V-15 15° Stereo Cartridge
Goodmans Maximus I Speaker System

NOW... Courlier 23

DUAL CONVERSION •TRANSISTOR POWER SUPPLY

including all crystals, mounting brackets, pouer cords and noise-cancelling microphone

Send for details . . .

FOR EXTRA INCOME,
A JOB SKILL IN DEMAND,
A BUSINESS OF YOUR OWN - OR TO SAVE MONEY ON YOUR OWN APPLIANCE REPAIRS

SEND FOR FREE BOOKS
Appliance Division, Dept. $=05.055$. National Radio Institute 3939 Wisconsin Avenue NW, Washington, D.C. 20016
Send me the illustrated free book that telis about opportunities in Professional Appliance Servicing and details of NRI's new course-plus a sampie lesson. I understand there is no obligation and no salesman will cail.

Address \qquad
Cit \qquad
Accredited Member National Home Study Council

SEND COUPON FOR THESE FREE воокs

A new, short, easy course trains you at home

Now you can prepare quickly to do professional appliance servicing at home in your spare time.

You are ready to start servicing appliances after only a few lessons. The entire course can be finished in months.

This is the fastest way to a new job skill or extra income or a business of your own. Wherever you live or want to live, you'll find a demand for top-notch appliance servicemen.

There are probably thousands of broken appliances right in your neighborhood. These can mean cash profits for you.

This new, low cost course covers-

- Small and large home appliances
- Farm and commercial equipment
- Portable electric tools
- Small gasoline engines
-there is even a special course arrangement to prepare you for the field of air conditioning and refrigeration.

Special equipment is included in your course at no extra cost.
Send coupon or write to Dept. 505-085

APPLIANCE DIVISION, NATIONAL RADIO INSTITUTE
3939 Wisconsin Avenue NW, Washington, D.C. 20016

RADIO－TV EXPERIMENTER

August－September 1965 CONTENTS／INDEX むCover Highlights	丰	$\begin{aligned} & \text { 즟 } \\ & \text { 든 } \end{aligned}$	$\begin{aligned} & \text { 들 } \\ & \text { 른 } \\ & \vdots ⿳ 亠 二 口 欠 彡 \\ & 0 \end{aligned}$		$\frac{i \pi}{\frac{1}{x}}$	$\frac{\underset{\Sigma}{\Sigma}}{\underset{\Sigma}{\Sigma}}$		
inElectronics at the Fair．．．．．．．．．． 6	－			－	－	－		－
\＆Electronics Goes to Your Heart． 35	－	－						－
is Neophyte＇s DX＇er Receiver．．．．．． 40		－	－	－				
Electronics Aweigh．．．．．．．．．．．． 44	－							－
Foreign Tube Replacement Guide．． 46	－	－			－	－	－	
\％Oscillobrator．．．．．．．．．．．．．．．．．．． 47		－	－				－	
Switches from Eyelets／Cardboard．． 50	－		－				－	
Snap That TV Pic．．．．．．．．．．．．．．．． 52	－					－		－
Build Her for Dinner．．．．．．．．．．．．． 53	－							－
¿Lab Check－Maximus 1．．．．．．．． 55	－	－			－		－	
¿Lab Check－Shure V－15．．．．．．．． 57	－	－			－		－	
\＆SCR Lamp Dimmer．．．．．．．．．． 59		－	－					－
Choosing \＆Using Diodes．．．．．．． 61		－	－					－
Secrets of Short－Wave Success．．．． 67	－			－				
Writing Music with Electrons．．．．． 70	－				－			－
Propagation Forecast．．．．．．．．．．．． 72	－	－		－				
HHam／CB Voice Shaper（Booster）． 73		－	－	－				
Build the Safe－Lite．．．．．．．．．．．．．．．． 76		－	－					－
Aluminum Storm Window Antenna． 80		－	－			－		
Automatic Heat Control．．．．．．．．．． 81		－	－				－	
Tenna Tuner．．．．．．．．．．．．．．．．． 84		－	－	－				

WHITE＇S RADIO LOG，Vol．44，No．1—Page 91
DEPARTMENTS－Bookmark 20 －Ask Me Another 22 －CB Column 27 New Products 30 －Literature Library 86 －Classified Ads 89

SELECTaCOM

- Dual Power: 3 Watts and 100 Milliwatts
- Built-in Mike, Speaker, Antenna
- Built-in Switch for Power, Antenna

EACH ONLY
4995

INTRaCOM

- No-License Power: 100 Milliwatts
- Built-in Mike, Speaker, Antenna
- Solid State and Very Low Drain

RADIO SHACK PIONEERS a whole new world of wireless intercom/transceiver communications possibilities for professional people, for businessmen, for home owners. Because SELECTACOM and INTRACOM are crystal-controlled and wireless, they can talk to mobile as well as walkie-talkie operators! Because the "mike" is built in, you talk at arm's length and in your natural voice. Because they do NOT transmit over the AC line; their range is not limited to units on the same AC mains! The price, of course, is sensational: under $\$ 100$ for Two dual-power SELECTaCOM units; under $\$ 70$ for TWO single-power INTRaCOM units. Both models - identical in $85 / 8 \times 53 / 8 \times 5^{\prime \prime}$ size and appearance - may be seen, heard, bought Now at any of the Radio Shack stores listed on the facing page. For mail orders, add 75% per unit for handling and mailing charge anywhere in the U.S.A.

1966 Radio Shack Catalog!

Brand New lllustrated Stereo/Electronles Catalog - over 5.000
ltems - Plus Every New lissue for One Full Year!

Fill Out and Mail to:
Radio Shack Mail Department
2727 West 7th St., Fort Worth, Texas
Please Mall Your Free 1966
Radlo Shack Cafolog to:
RTV-865
Name (Please Print)
Street
City _State__Z_Zip \qquad

Fill in coupon for.a fres One Yoar Subscrip. tion to OLSON ELECTRONICS' Fantastic Value Packed Catalog-Unheard of LOW, LOW PRICES on Brand Name Speakers, Changers, Tubes, Tools, Stereo Amps, Tuners, CB, and other Values. Credit plan available.

NAME \qquad
ADDRESS
CITY \qquad ZONE
STATE
If you have a friend interested in electronics send his name and address for a FREE subscription also.

OLSON ELECTRONICS INCORPORATED

357 S. Forge Strieet Akron, Ohio 44308

BURNOUT-PROOF METER MOVEMENTS (3)
 PROFESSIONAL INSTRUMENTS

ONE YEAR Factory Guarantee
Up to 100,000 Ohms Per Volt Sensitivity
Close Tolerance $\pm 2 \%$ Jeweled Movements Instrument Quality Multipliers \& Shunts
Packaged in Shock Proof Custom Cases Mirrored Meter Scales

Model M-330 (illust.) 30K Ohms Per Volt DC

FOR COMPLETE DETAILS see your Distributor or write Dept. RE2

I.T.I. CORPORATION

JULIAN M. SIENKIEWICZ Edllor
WA2CQL/KA1Ф614

WILLIAM HARTFORD KKD7432	Associate Editor
ANTHONY MACCARRONE	Art Dircetor
JOSEPH DAVIS	Assistunt Art Director
GREGORY CHISLOVSKY	Art Editor
ALBERT DE QUERQUIS	Ant Associats
VICTOR J. CLOSI	Art Associato
LYNDA P. KALMAN	Art Associato
ELLIOT S. KRANE	Adeertising Director
JIM CAPPELLO	Advertising Manager
LEONARD F. PINTO	Production Director
CARL BARTEE	Production Manager
HELEN GOODSTEIN	Assistant Production Manager
RICHARD L. HOWE	Promotion Director
JOSEPH DAFFRON	Esecutive Editor,

President and Publiaher B. G. DAVIS

Érecutice V'iee President and Assistont P'ublisher JOEL DAVIS

Viec President and Editorial birector herb leavy

RADIO-TV EXPERIMENTER, Vol. 19,No. I (h748), is published b-monthly by SCIENCE \& MECHANICS PUBIISHING CO., a subsidiary of Davis Publications, Inc. Editoriat, business and subscrlption olfices: 505 Pork Ave., New York, N. Y. 10022 . One-year subscription tsix issues)$\$ 4.00$; two-year subscription 112 issuesl- $\$ 7.00$; and three-year sub. scription 118 issues) - $\$ 10.00$. Add $\$ 1.00$ per year for postage outside the U.S.A. and Canada. Advertising affices: New York, 505 Park Ave., PL.2.6200; Chicago: 520 N. Michigon Ave., 527.0330 ; los Angeles: 6253 Hollywood Blvd., 213-463-5143; Allonfar Pirnie \& Brown, 3108 Piedmont Rd., N.E., 404-233.6729; long Islond: Ien Osten, 9 Garden Street, Great Neck, N.Y., 516-487-3305; Southwestern advertising representative: Jim Wright, 4 N . Eight St., St. Louis, CH 1-1965.

EDIJORIAL CONTRIBUTIONS must be accompanied by return poslage and will be handled with reasonable care; however, publisher assumes no responsibilly for return or safety of manuscripts, art work, or photographs. All contrlbutions should be oddressed to the Editor, Rodio-TV Experimenter, 505 Pork Avenu*, New York, New York 10022.

Second class postage paid at New York. New York and as additional mailling dfice. Copyright 1865 by Sclence ond Mechonics Publishing Co.

Accredited Member National Home Study Council good training doesn't cost . . . It pays!

An FCC License Or Your Money Back!

Completion of a CIE Licensing Course will prepare you for a First Class Commercial Radio Telephone License with a Radar Endorsement. Should you fail to pass the FCC examination for this license after successfully completing your course, you will receive a full refund of all tuition payments. This warranty is valid for the entire period of your enrollment agreement.

Increase Your Technical Knowledge

Get a government license plus an understanding of such electronic applications as computers... industrial electronics . . . radar . . . communications . . . and many more.

GET THIS HANDY POCKET ELECTRONICS DATA GUIDE

Free...

Puts all the commonly used conversion factors, formulas, tables, and color codes at your fingertips. Yours absolutely free if you mail the coupon in 30 days. No further obligation!

$$
\begin{aligned}
& \text { TO GET THIS } \\
& \text { FREE GIFT }
\end{aligned}
$$

MAIL COUPON Within 30 Days!

Cleveland Institute of Electronics

1776 E. 17th Street - Dept. EX-13. Cleveland, Ohio 44114

Get All 3 Booklets

Cleveland Institute of Electronics

1776 E. 17th Street • Dept. EX-13 - Cleveland, Ohio 44114.
Please send Free Career Information Material prepared to help me get ahead in Electronics and a free copy of your "Pocket Electronics Data Guide'.

CHECK AREA OF MOST INTEREST-
\square Electronics Technology
\square Broadcast Engineering
\square Electronic Communications
\square First Class FCC License
\square Industrial Electronics

Your Occupation \qquad
Name \qquad Age \qquad

Address
County \qquad

City
State
Zip \qquad

ELECTRONICS AT THE FAIR

By Art Zuckerman

You'll find a treasure of information about electronics this year at the New York World's Fair. Whether you visited the Fair last year or are planning your first visit, it's a pretty safe bet that you'll find much to learn about the electron in its many guises, past and present.

To help you in your quest through the multitude of exhibits at the Wonderland on Flushing Meadow, we have compiled the following list of attractions of special interest to the electronics buff.

BELL SYSTEM PAVILION

Probably the greatest single communications show at the Fair is the Bell System's massive exhibit. A moving-chair ride sets the stage by giving you a brief tour of the history of man's efforts to send his thoughts across great distances. Then an electric stairway takes you down to the underground main exhibit hall. In the senses area of this great hall, the Visible Speech Translator shows you what sound looks like on a TV screen. Nearby is the Vocoder, a device that breaks down the elements of the human voice, analyzes them, and puts them back together again. There are exhibits that explain crystal and solid-state technology, the workings of the maser and the laser. You will also see a working demonstration of wave theory and the operation of transoceanic circuits via undersea cable. Still other exhibits show the devices that permit computers to talk to one another by telephone, and you will be shown how tomorrow's phone switching system will permit a caller to "dial" you and get through even though you're visiting a friend. Probably one of the most interesting exhibits is the Picturephone, a television telephone service that has already been inaugurated among New York, Washington, and Chicago. Outside the exhibit building you will be able to look inside a microwave relay tower and see how it can transmit color television broadcasts. This is definitely a must exhibit for anybody interested in electronics.

COCA COLA PAVILION

Amateur radio operators can pause to refresh and DX at Coca Cola's oasis at the Fair. If you are a qualified "ham," all you need do is present your license, and you will be welcome to operate

HAM RIG at Coca Cola Pavilion is tried by RADIO-TV EXPERIMENTER's editor, Julian M. Sienkiewicz, WAZCQL, as station manager Will Lierheimer looks on. The official amateur radio voice of the New York World's Fair, K2US facilities are available to any pavilion visitor who holds a ham license.

K2US, the Hallicrafter-equipped, 3-position transmitting and receiving station that is the official short-wave voice of the Fair. Always on hand are members of the American Radio Relay League (ARRL). If you haven't got your amateur ticket but would like to learn more about amateur radio, here's your opportunity to see it in action and, also, to pick up helpful literature. A must for anyone with a real interest in amateur radio.

BETTER LIVING CENTER

Acoustic Research, Inc.: A complete display of AR speakers in action, together with the AR taped explanation of what's happening. They

How To Get Improved SWL Performance At The Same Low Price...

Buy The New Heathkit GR-64... Only \$39.95!
 Covers 550 kc To 30 mc in 4 lBands!

You'll Like Its New "Lowboy" Styling. Too! Masculine gray, sleek-silhouette metal cabinet with a midnight black front panel accented by green \& white band markings and silver trim ... makes the new Heathkit GR-64 a truly attractive Shortwave Receiver you'll be proud to use anywhere in your home! New Circuit Features For Improved Performance: Like the larger $5^{\prime \prime}$ round speaker for better sound . . . a built-in rod antenna for broadcast band reception plus unbalanced input for external antenna.... a high voltage, transformer-operated power supply for peak receiver efficiency ... parallel filaments for longer tube life \ldots new, easier-to-read \& lighted bandspread tuning bar and relative signal strength indicator ... and a one-piece molded dial for faster, easier construction!

Includes broadcast plus 3 shortwave bands. The lighted 7" dial also has a logging scale for quick, easy station selection. Features BFO for receiving code \& SSB transmissions . . 4-tube superhet circuit . . . "velvet touch" 16 revolution tuning knob . . . electrical bandspread for maximum station separation ... and a headphone jack for private listening.
Ideal For Novices \& Avid Shortwave I isteners!
Goes together quickly, easily with fast circuit board construction \& simple-to-follow instructions.
And at the low price of only' $\$ 39.95$, you won't find a better SWL value around ... choose the new GR-64 now!
Kit GR-64, is lbs... $\$ 39.95$

- Reliable 10 transistor, 6 diode circuit - Fixedaligned ceramic IF "Transfilters*" - Covers 550 kc to 32 mc in five bands - 50 -inch telescopic whip antenna - Zener diode voltage regulation - Smooth, easy tlywheel tuning *Built-in $4^{\prime \prime} \times 6^{\prime \prime}$ speaker - Large, slide-rule dial for easy station selection - Headphone jack for private listening - BFO for code \& SSB transmissions - Compact \& battery powered for portability, yet can operate on 117 v . AC with optional Xl' $^{2}-2$ accessory ($11 \$ 9.95$
Kit GC-IA, 18 Ibs. $\$ 95.00$

FREE

HEATHKIT CATALOG
See these and over 250 other exciting Heathkts ovailable in easy-to-build kit form. Sove 50% or more by doing the eosy assembly yourselfi Send for your free cotolog loday

AUDIO ACCESSORY SELF-SERVICE CENTER

At lastl All the confusion and "wait" gone. Fail-Safe quality. Packages factory sealed, precisely labeled by name, type, mating part, price. Guaranteed.
Send for Complete Catalog:
SWITCHCRAFT, INCORPORATED
5579 No. Elston Ave., Chicago, IHinois 60630
ASSEMELE THIS ALL BAND BATTERY SHORT WAVE RADID FOR 59.951

You can earn an A.S.F.F. degree at home, College level HOME STUDI courses tagith so you can understand them. Continue your education. earn more in the highly paid electronics industry. Hissiles, computers, transistors, sutomation, complete electronics. Oret 27,000 graduates now employed. Hesident school avallable at our Chicago campus-1'ouncled 1934. Send for free catalog. Amerlican Instltute of Engineering \& Technology $1139 E$ West Fullerton Parkway

Chicaso 14, III

TRANSISTORIZED CONVERTER 26-200 MC

Receive signals from 26 to 200 MC (1 MC spread), on broadcast band using car radio, crystal control or tuneable (1 MC spread). KIT \$11.00 pp. WIRED \$20.00 pp. WEBBER LABS 40-8 MORRIS ST. LYNN, MASS.

AT THE FAIR

turntable. All are demonstrated in conjunction with Dyna amplifier and tuner equipment, duplicating the AR exhibition booth in New York's Grand Central Station. Worth dropping in on if you happen to be in the Better Living Center.

FORD WONDER ROTUNDA

After debarking from Ford's automobile ride into the past and future, guests at the Wonder Rotunda stroll through a science walk, in which they see samples of the computer and space work

ARTIST'S RENDERING of one of the product "vignettes" that is featured at the Philco Corporation's show at the Ford Motor Company Pavilion. Animated penguins are storing their fish in a 1965 Philco food freezer.
being done by the people who created the Model T. An electric ramp then leads down to a main exhibition hall, where products on display include the electronic produce of Ford's Philco division. Of passing interest, but this isn't an exhibit you'll seek out exclusivly for its electronic content.

GENERAL ELECTRIC PAVILION

General Electric has won itself a first at its World's Fair exhibition by putting on a live demonstration of nuclear fusion, the power behind the hydrogen bomb. Once harnessed, fusion will provide power far vaster than that of atom-

REAR-PROJECTION screens set into wall mirrors at GE Pavilion show electronics research activities.

Who Pays $\$ 30$ Or More For Portable Radios These Days?

 (回

Thousands Of Heathkif Builders!

Why? Pride! And a desire for better quality! Not just the pride of owning something new, but a special kind that comes from building it yourself. From watching it grow and take shape. From creating a sophisticated piece of electronics with your own hands.
True, it takes a little effort . . . about 4 to 6 hours. But it's a labor of love. And the large "exploded" diagrams and simple, step-by-step instructions make it a breeze. And a lot of fun.
And when you finish and turn it on. Pow! You glow all over with a unique pride and self-satisfaction. You've just joined the millions of people, from 79 -year old grandmothers to 11 year olds, who build Heathkits. People with no special skills or technical knowledge. People like you.
Quality? The sound of these superb portables is special. A clean, bold "big-set" sound . . . the kind you can't get with miniatures. Compare the performance of your Heathkit portable with any!
(A) New Deluxe All-Transistor AM Portable. . . $\mathbf{\$ 2 9 . 9 5}$ - 6 silicon, 2 diode circuit gives 8 transistor performance - Uses standard size " D " flashlight batteries, protected against corrosion by a plastic holder . . . only $1 / 10$ the operating cost of typical pocketsize portables •Large $4^{\prime \prime} \times 6^{\prime \prime}$ oval PM speaker for big-set sound * Easy-to-read slide-rule dial, positive vernier tuning, and convenient "thumb-touch" controls - RF stage \& double tuned I.F. stage assure greater sensitivity \& selectivity - Big $1 / 2^{\prime \prime}$ diameter built-in rod antenna for distant stations pick up Handsome black simulated leather case - Fast circuit board construction Kit GR-24, 5 Ibs.
(B) Deluxe All-Transistor FM Portable... $\$ 47.95$

- Powerful 10-transistor, 2-diode circuit for instant operation, long trouble-free performance - Large $4^{\prime \prime}$ $\times 6^{\prime \prime}$ oval PM speaker for clear, bold sound - Automatic frequency control for drift-free reception -Treble-cut tone control for finer tone - Vernier tuning for accurate station selection - 34" telescopic an-tenna-headphone jack for private listening - Attractive simulated tan leather case with beige grille Fast circuit board construction - Operates on 9 v . battery (model GRA-131-1. . \$1.10) Kit GR-61, 6 Ibs.

Solid-state CB mate

The best way to ring up more $10-2 \mathrm{~s}$ with the new solid-state transceivers is by using one of the new lowimpedance Sonotone Ceramikes ${ }^{(1)}$. They are designed specifically for all-transistor transceivers. Transmission is loud and clear, and Ceramikes are built to take abuse. Get the low-impedance "CM-3050" or the "CM-3050M" with Magnetic Mount, today. Also Models "CM-30" and "CM. 30M" for tube transceivers. Prices start at $\$ 15.75$. Write for Free catalog SAH-7.

AT THE FAIR

smashing nuclear energy-and without creating poisonous waste products. Also on view at GE's Progressland Pavilion are the story of electrical progress as enacted by Walt Disney's remarkable audioanimatronic figures; a computer-controlled steel mill; an electronic classroom complete with closed-circuit TV, teaching machines, and a tape recorder language lab; a computerized, electronified hospital; a space station; and electronic appliances and entertainment instruments for the home. A generally-interesting pavilion, though some rather hokey treatment takes the keen edge off the very real fusion demonstration.

GENERAL MOTORS FUTURAMA

GM's fabulous look into the future is totally intertwined with electronics. The Futurama ride

AUTO TROUBLESHOOTER that looks like a space capsule is part of Delco display in GM Futurama. It's supposed to figure out what's wrong with a car via electronic probes and com-puter-an electronic "who-done-it."

APOLLO MODEL is an AC Spark Plug contribution to GM's Futurama. AC is working on Apollo's electronic space guidance system.

BUILD 20 RADIO CIRCUITS AT HOME

 with the Deluxe

 with the Deluxe PROGRESSIVE RADIO "EDU-KIT"® PROGRESSIVE RADIO "EDU-KIT"® A Practical Home Radio Course

 A Practical Home Radio Course}

Now Includes

* 12 RECEIVERS * 3 TRANSMITTERS * SQ. WAVE GENERATOR * SIGNAL TRACER * AMPLIFIER
* SIGNAL INJECTOR * CODE OSCIllator
\star No Knowledge of Radio Necessary
\star No Additional Parts or Tools Needed
\star EXCELLENT BACKGROUND FOR TV
\star SCHOOL INCUIRIES INVITED
* Sold In 75 Countries

YOU DON'T HAVE TO SPEND

 HUNDREDS OF DOLLARS FOR A RADIO COURSEThe "Edu-kit", offers
You an outstanding PRACTICAL HOME RADIO COURSE at Hse of the most modern methodif it home training. You will learn radlo theory construc. In You wili learn how to buitd radlos, using reEular schematics: how to wire and solden punched Hotal chassis se well to service radios. You wil work with the standard type of RF and wif learn the basle principles of radio. Yout will construct, study and work whit and practice code. using the progressive coole osciltator. You will tearm and practice trouble-shooting, using the progreselve sisnal Tracer. Prozressive slanal thector. Pro-
ing instructional material. Amativur Licenses, Vou will bulld Receiver, Transmitter, Square Wave Generator, Code Oscillator, Signal Trecer and Signal lnjector clrcuitn, and learn how to operate them. You whasolutely no pevious knowledge of redlo or science is required. The. "Edu-Kit" ist provide you with a bilaic education in Eliectronics and Radio worth many times the low THE KIT FOR EVERYONE

You do not need the sigghtest background In radio or sclence. Whether you are Interested in Padio sinelectronics becausey you want an interesting hoblute, you wlit find the many thousand or of inglif duals of ait
akes and. backErounds have successfully used the "Edu-kit" In more than 79 coun tries of the world. The carefuly designed, step by step' so tha allow you to teach yourself at your own

PROGRESSIVE TEACHING METHOD

The Progressive Radio "Edu. Rit" Is the foremost educational radio Mit In the world and, "unlversally accepted as the standard in the field of elecironics training. The Equat learn schematics, study theory, practice troubte shooting all in a closely integrated pro: Eram desixned to provide an easily-tearned, thorough and interesting. bachgronnd in radio function. theory and wiring of these parts. Then you buitd a simple radio. With this firtit set you' wit enjoy, wistening to rexular broadcast stations, learn theory, practice testing and trouble-shoot fig. Then you bulfd more advanced radio, learn more advanced theory and techniques. Gradually, in a prozresslve manner. and at your own rate. you with Drotessionat Radlo Techniclan.
Included in the "Edu-Kip" course are Peceiver. Transmitter, Code Oscillator, SIgnal Tracer, Square wave Generator and signal injector circults. These are not unprotessional wiring and noldering on metal chaseis, plus the new method of radio conitruction known as "Printed circultry." These circuits operate on your reqular AC or DC houge current.

THE "EDU-KIT" IS COMPLETE

You will receive all parts and instructions neeensary to build twenty dimorent radio and -tectronica circulte, each guaranteed to operate. Our Kite contaln tubet. tube sockets, vari able, electrolytic, mica, ceramic and paper dielectric condensers, reastors, tio strips, hardware, tubing, ounched metal chasale, intruction manuals, hook-up wire. nolder, elenium, rectifiers, colla, volume controls and ewitchet, etc.
opecial tube sockets, hardware and instructions. You also receive printed circult chastala, professional electric soldering iron, and a soifopowered Dynamic Radio and Electronica Tester. The "Edu-Kit" also includes Code tnstructions and the Progrestive Code Oncilistor in addition to F.C.C. Radio Amateur License tralning. You will atoo receive lessons for Fidelitv quide and a quix sook. You receive Memberahip in Radio-TV Club. Fidelify Guide cortificate of Merit and oiscou
tion service.
instructions. etc. Everything is yours to keep.

PRINTED CIRCUITRY

At no inerease in price, the "Edu-Kit" now Includes Printed Circuitry. You bulld - Printed Circuit Sianal Injector, a unique servicing Instrument that can detect many Radio and TV troubles. This revolutionary now technique of radio construction is now becoming popular in commercial radio and TV sets.
A Printed Cireult is a spectal insulated chassle on which has been deposited a con ducting material which takes the place of wiring. The various parts are merely plugged in and soldered to torminals.
Printed Cireuitry is the basis of modern Automation Electronics. A knowledge of this sublect is aecessity today for anyone in. terested in Electronits.

[Send "Edu-Kit" postpaid. I enclose full payment of $\$ 26.95$
\square Send "Edu-Kit" C.O.D. I will pay $\$ 26.95$ plus postage
\square Rush me FREE descriptive literature concerning "EdII-Kt.

Address

PROGRESSIVE "EDU-KITS" INC.

1186 Broadway, Dept. 531NN, Hewlett, N. Y.
 NOW - 4 Models - 150,000 250,000 and 400,000 VOLTS PLUS NEW SUB-MINIATURE Complete Kits 150,000 VOLT MOOEL......\$27.95 PP. 250,000 VOLT MODEL...... 32.95 PP. Also Plastic Materials for: - mepulsion coil ..öil....... 3.00 - Minlatuie tegli coil....... 21.00 - WUUPED UP TESLA COIL........ 24.00 : TUBBO GENELATOIC KIT........ 20.00 - OPAQOE GENEHATOIS KIT....... 4.25 : Wilson cloud cilamber..... 4.50
 - VACUUM CHAMBEH KIT...9.00\& 1.50 FOREST PRODUCTS, INC,
Dept. RT. 50 Cambridge. Massachusetts

you have a complete portable wireless PA system. You can talk to any size group, in any size room with hands free, no wires. 101 usespublic adcress, broadcast, musical instrument pick-up, surveillance, etc. At electronic supply houses, $\$ \angle 9.50$.

AMPHENOL CONSORT

DISTRIBUTOR DIVISION
amphenel - Bore electronics corporatios 23iss asm Avo., Drasturem. lut. colss

AT THE FAIR

itself takes you into a tomorrow of advanced space, undersea, and Arctic exploration, all with the aid of electronic marvels. Then there are automated farms and GM's major dream, an electronic roadway on which automobiles are controlled remotely by radio. Even GM's dream cars feature electronic controls, replacing today's mechanical steering and power systems. Other displays deal with military electronics and communications, radiation, sonar, and inertial guidance systems for spacecraft. There is even a fanciful presentation in which technicians dressed like spacemen analyze a car's mechanical troubles with the help of a computerized "capsule." This is probably one of the finest exhibits at the Fair, offering more hard information to those desiring it than any other pavilion with the possible exception of the Hall of Science.

HALL OF EDUCATION

Within this pavilion are displays showing the school of tomorrow and current audio-visual equipment used in teaching. including electronic teaching machines, closed-circuit television, phonographs, sound movies, and tape recorders. Some interesting exhibits nestled within a building that contains a shade too much of the huckster touch.

hall OF SCIENCE

Atomic Energy Commission: Highlight of the AEC exhibit is "Atomville, USA," designed to enlighten the younger set while giving them a good time. It is open only to youngsters 8 to 14. Among the attractions is a simulated research reactor they can "operate" while listening to a

MANNED ORBITING LAB is depicted in
Martin Marietta show in Hall of Science. Mostly a film, the show's highlight comes when full-sized models of the Orbiting Lab and a space taxi rendezvous above the audience's heads- 1970 and you are there.

Slitting accuracy and skew angle

Tape is made in wide rolls which are slit to width- $1 / 4^{\prime \prime}$ for most audio tapes. There are three main considerations in this process: cleanliness, dimensional accuracy and trueness of cut. Cleanliness cannot be given too much consideration. When the tape is slit, particles of the oxide and the base can flake off. This condition arises from poor oxide adhesion and poor quality-control standards on slitters. Slitting dirt is virtually nonexistent in Kodak tapes because of our "R-type" binder and our unique slitting techniques.

Tape dirt clogs the recording gap and prevents the tape from making intimate contact with the head, thus causing dropouts and high-frequency losses. Oxide dirt can also cause a phenomenon known as re-deposit. During tape transport operation, gummy oxide dirt can actually re-deposit on the magnetic layer and fuse in position.

To get some idea about how Kodak tape slitting compares to ordinary slitting, take a look at these two photomicrographs. The dirt you see between the turns on the left is oxide dirt. Compare it to the virtually spotless edges of Kodak recording tapeon the right.

It's like splitting hairs, only more critical

From our 42-inch-wide master web, we have to cut $1601 / 4$-inch ribbons of tape-each almost two
miles long. That's a lot of total mileage, especially when you think how straight and true those edges must be to assure optimum tracking on your recorder. In terms of slitting accuracy the standard specs call for a tolerance on width of $\pm .0020$ inches. We decided that that was just about double what it really should be, so we hold ours to $\pm .0010$ inches.

But the really critical part of slitting is a bad guy known as weave. When a tape weaves, it passes the head at a continuously changing skew angle. Look at the graph.

Note how losses pile up as skew angle increases. As you'd guess, the losses are in proportion to frequency. Higher frequencies, higher losses. Same principle, really, as an azimuth loss.

Proper tape tension is important in order to prevent "stepping." Stepping usually takes place about $1 / 3$ of the way from the core of the reel. (That's the point at which there are no clock wise or counterclockwise forces acting upon the tape.) You can visualize it as a lateral shearing of a roadway duriug an earthquake. Shades of old San Francisco. This sets up stresses which cause fluted
edges and prevent proper head contact. From winding billions of feet of motion picture film, Kodak has developed some pretty specialized tension-control techniques. The end result, of course, is that when you get Kodak tape on a roll, you know it's wound properly, not too loose, not too tight. Just right. Our ThreadEasy Reel is part of the story, too. Because it is dynamically balanced, we get a gool wind right off the bat and you get a good rewind, too.

Kodar Sound Recording Tape in a complete variety of lengths and types is available at most tape outlets: electronic supply stores, specialty shops, department stores, camera stores . . . everywhere.

FREE! New comprehensive booklet covers the entire field of tape technology. Entitled "Some Plain Talk from Kodak about Sound Recording Tape," it's yours on request when you write Department 8, Eastman Kodak Company, Rochester, N. Y. 14650. OEastman Kodak Company, MCMLXI

EASTMAN KODAK COMPANY, Rochester, N.Y.

COIUR ROIED NUTONIVR Stes

> no fumbling.. you reach for the right one every time!

AT THE FAIR

taped explanation of what's happening. They also get a crack at manipulating simulated "hot" radioactive materials by remote control with robot hands. Other devices permit the young ones to build atom structures, see what it would fee! like to be "inside" an atom, and read their weight in atoms. All these atomic games can be watched by parents via closed-circuit television. The older folks can also examine an exhibit on "Radiation and Man." It outlines the main facts of atomic science. including the operation of an x -ray machine. Altogether a fascinating glimpse into the world of the atom for kids and dads.
Martin Marietta Corp.: Starring attraction at the Hall of Science is Martin Marietta's movie-and-model demonstration of the planned Na tional Orbiting Space Station, a manned scientific laboratory that will one day hurtle through space so that we can learn more about our newest frontier at first hand. Climaxing the show is the docking of a space taxi to NOSS so that a relief crew can take over and permit the station's personnel to return to earth. During the actual docking maneuver, the film goes off the screen so that attention can be focused on full-sized models of the NOSS and the space taxi. As they move closer together, the sound track permits you to hear the shuttle craft being talked in under radar control from NOSS. A fascinating, informative, and thrilling show.

IBM-INTERNATIONAL BUSINESS MACHINES PAVILION

Beneath the egg-shaped theatre on stilts that IBM calls an "Information Machine," you will

INFORMATION MACHINE theatre inside the IBM "egg" uses a multitude of movie screens to show that computers think pretty much the way people do-only much faster.
find a host of fascinating displays that shed light on how computers operate and what they can do. A group of mechanical puppet-show theatres describe computer systems and how they work

SOMEONE SHOULD DEVELOP AN EASY WAY

 TO LEARN ELECTRONICS AT HOME
RCA INSTITUTES DID!

RCA introduces new CAREER PROGRAMS -beginning with the student-proved "AUTOTEXT" Programmed Instruction Method-the faster, easier way to learn. You start to learn the field of your choice immediately. No previous training or experience needed.

Pick the career of your choice - and RCA Institutes will do the rest! RCA's new, revolutionary "Career Programs" help you go directly to the career you want! You waste no time learning things you'll never use on your job! Each Career Program is designed to get you into the kind of job you want in the fastest, easiest possible wayl

SEPARATE COURSES

In addition, in order to meet specific needs, RCA Institutes offers a wide variety of separate courses which may be taken independently of the above Career Programs, on all subjects from Electronics Fundamentals to Computer Programming. Complete information about these courses
choose a career program now your first step to the job of your choice!

- Television Servicing
- Telecommunications
- FCC License Preparation
- Automation Electronics
- Automatic Controls
- Digital Techniques
- Industrial Electronics
- Nuclear Instrumentation
- Solid State Electronics
- Electronics Drafting

RCA INSTITUTES BONUS EXTRAS
Only RCA Institutes offers you a Liberal Tuition Plan, one of the most economical ways to learn. Plus, you get top quality equipment in all kits furnished to you with your courses - yours to keep and use on the job. And now, RCA's NEW PRO. GRAMMED ELECTRONIC BREADBOARD GIVES YOU LIMITLESS EXPERIMENTATION - scientific laboratory procedures right in your own homel You build a work. ing signal generator, AM Receiver, Multimeter, Oscilloscope, and other valuable

equipment - all as a part of your course! Get the facts today!
Classroom Training Also Available. Day and Evening Classes are available to you in New York City at RCA Institutes Resident School. You may be admitted without any previous technical training; prep courses are available if you haven't completed high school. Coeducational classes start four times a year.
SEND COUPON TODAY FOR COMPLETE INFORMATION. CHECK HOME STUDY OR CLASSROOM TRANING.

RCA INSTITUTES, inc., rx-4s

A Service of the Radio Corporation of America 350 West 4th St., New York City 10014

- - - - - - - - - - - - - - - -

TCA Institutes, hec. Dept. RX-85
Please rush me FREE illustrated book with information checked below. No obligation. No salesman will call.

CAMADIANS: Take advantage of these same RCA in- I siltutes Courses at no saditional cost. No postage, Ino customs, no delay. Fill out coupon and send in Imontreal 9, quebec.
montreal 9 , Quebec.

HUNDREDS OF TOP QUALITY ITEMS-Ifeceivers. Transmitters. Mflcrophones, Interters. Fower Supplles, Meters. Phones. Antennas. Indicators. Filters, Transformers, Amplitiers. Headsets. Converters, Control lioxes, Dsnamotors, Test Liquipment. Alotors. Hlowers, Cable. Keyers. Chokes. Handsets. Swltches, etc., etc. Bend for F'KEE Catalog-Dept. 28.
FATBAADIO SALES 2133 ELIDA RD. • Box $1105 \cdot$ LIMA, OHIO

EXCLUSIVE FRANCHISE

Amazing new liquid plastic coating used on all types of surfaces interior or exterior. Eliminates waxing when applied on Asphalt Tile, Vinyl, Linoleum, Vinyl Asbestos, Hard Wood, and Furniture. Completely eliminates painting when applied to Wood, Metal, or Concrete surfaces. This finish is also recommended for boats and automobiles.

NO COMPETITION

As these are exclusive formulas in demand by all businesses, industry and homes. No franchise fee. Minimum investment- $\$ 300$. Maximum invest-ment- $\$ 7,000$. Investment is secured by inventory. Factory trained personnel will help set up your business.

For complete details and descriptive literature write :

CHEM-PLASTICS \& PAINT CORP. 1828 Locust

St. Louis 3, Mo.

FREE! NEW CAREER GUIDE TO

 Success in ELECTRONICS Automation, Math - Basic or Advanced While cholce of new Honne Study Programs to prepare you for well paylng career or advancement in present job. Choose service. Broadcasting. Industrial. Automation. We asslst you in choosing best program save time and money. Tultion refund surety. Since 1931. Write todsy-
CENTRAL TECHNICAL INSTITUTE Lept. 12085, 1644 Wy andotle St. - Kansas City. Mo. 64108

TRAIN AT HOME FOR HIGH-PAYING JOBS! Send for an advance copy of "HOW TO SUCCEED through home study," Dept. 754, 505 Park Ave., N.Y., N.Y. 10022 . \$1.25.

AT THE FAIR

in a delightfully-entertaining manner. In the computer applications area, you are treated to a demonstration of how the monster mechanical brains can translate Russian into English and how they can recognize hand-written characters. The most spectacular feature of the IBM Pavilion, of course, is the Information Machine, with

IBM PAVILION visitors fill out dates on cards for computer to read and print out headline from New York Times story of that day.
its "People Wall." This wall is actually a grandstand that wafts you hydraulically up into the egg-shaped theatre. There, through the medium of movies projected onto 9 screens and accompanied by super-stereophonic, 5 channel sound, you are shown how computer processes duplicate the normal human manner of solving problems. If you leave the IBM Pavilion still in the dark about what and how a computer is, you'll have only yourself to blame. A must exhibit for anybody interested in electronic data processing (EDP).

JAPAN PAVILION

Japan's bustling electronic industry is given an excellent showcase at the pavilion of the Far East's technological giant. Electron microscopes are displayed in action, and there are demonstrations of some fascinating videotape recorders, including one that takes and holds still pictures. There is a "space ship" youngsters can "fly" that is connected to a computer that displays its flight path. You will see miniature TV sets in a mass display, a picture on every screen, and a wide assortment of Japanese radios, phonographs, and tape recorders. You will also see electronic controls for industrial machinery. This is a compelling, almost encyclopedic show of Japan's electronic goodies.

KODAK PAVILION

? Though Kodak's show is obviously geared to
photography, it does have a few things in it that fall into the electronics area. One is an exhibit of radiography, or x -ray technology, featuring the world's largest radiograph. This is a S-foot,

WORLD'S LARGEST radiograph is this X-ray of an aircraft jet engine, on view at the Kodak Pavilion.
$91 / 2$-inch $\times 16$-foot. 8 -inch x-ray of a jet aircraft engine. There is also a movie presentation which, while based on chemistry, explains atomic and molecular theory entertainingly and clearly. Definitely worth glancing into, even if you're not a photo bug.

MISSOURI PAVILION

The home of McDonnell Aircraft Corp. proudly displays two of that company's major contributions to the space age-a replica of the Mercury spaceship. Friendship 7, and a full-sized mock-up of the two-man Gemint capsule. Interesting, but it duplicates displays to te found elsewhere, especially in the Space Park.

NATIONAL CASH REGISTER PAVILION

An NCR computer goes through its paces for visitors, providing them with a question-answering service. A roomfull of mathematical games

GOURMET RECIPES via computer for Fair goers is for the asking. The NCR 315 computer at the National Cash Register Pavilion will provide visitors with a host of recipes from Hilton International Cookbook ranging from Vichysoisse to Cherries Jubliee.
will give you a painless lesson in binary language as employed by electronic computers. You can also view such miniaturized gadgets as a television screen so small you have to look at it through a microscope. A moderately-interesting exhibit for the electronics minded. 151 AMP 200 V epoxy rectifiers, made by Sylvania $\$ 1$ 2 25-AMP SILICON RECTIFIERS, $1-60 \mathrm{~V}, 1-100 \mathrm{~V} \$ 1$ 4 ZENER REFERENCES, IN429, 6-volt, silicon . $\$ 1$ 1 "TINY" 2N1613 2W. 100 MC , TO46 case, npn \$1 2 S00MC TRANS'TRS, 2N9\&4, mesas, pnp, TO18 \$1 10 "PIN HEAD" TRANSISTORS, rf, If, DID ... $\$ 1$ 4 2N43 OUTPUT TRANSISTORS, by GF, pup, TOS $\$ 1$ 42 N333 NPN SILICON transiators, by GE, TO5 $\$ 1$ 102-6Amp RECT's, studs, silicon, 50 to $100 \mathrm{~V}, \$ 1$ 1 25-AMP SILICON CONTROL RECF, 100 PRV . $\$ 1$ 2 4-WATT PLANAR TRANS'TRS, 2N497, 2N498 \$1 4 2N35 TRANSISTORS, npn, by Sylvania, TO22 is 4 "MICRO" TRANSISTORS, 2N131's, $1 / 16^{\prime \prime}$, If $\$ 1$ 4 CK721 TRANSISTORS, prip, aluminum case . . $\$$ 101000 MC-IN25I GERMANIUM DIODES 530 MC TRANSISTORS, like 2 N 247 , Sylvanai.. \$1 85 W . TRANSISTOR, sllicon npn mesn, $2 N 424 \ldots \$$ 1 3N35 TETRODE, 150 me transistor, silicon $\ldots \$ 1$
10 PNP SWITCHING TRANSISTORS, 2N1305, TOS $\$ 1$ 10 NPN SWITCHING TRANSISTORS, 2N3 38, $440 \$ 1$ 15 PNP TRANSISTORS, CK722,2N35,107...... $\$ 1$ 15 NPN TRANSISTORS, 2N35, 170, 440, \$1 30 TRANSISTORS, ri, if, audlo, no test, TOS \$ 4 35.W. TRANS'TRS, 2N1434, CBS, TO10, stud \$1 10 1000-MIL "CERAMIC"' RECT. silicon, 50-400V\$1 10 POPULAR CK772 TRANSISTORS, pnp, no test \$1 5 2N107 TRANS'TRS, by GE, pnp, pop. audio pak \$1 1 40W 2N1648 TRANS'TR silfcon mesa.808Voles $\$ 1$ 10 ZENERS GLASS SILICON DIODES, axial, leads \$1 6 2N408 TRANSISTORS, TO1, pap, driver \$1 2 2N718 NPN SILICON PLANARS, by Finirchild $\$ 1$ 4 2N219 TRANSISTORS, mixer-conv, TO22.
10 MICRODIODE STABISTORS, epoxy, silicon
2 2N706 $500 \mathrm{MW}, 300 \mathrm{MC}$ NPN PLANAR, TO $46 . \$ 1$ 4 2NI7O TRANSISTORS, by GE.. nipn for ken'l rf \$1 6 TRANSISTOR RADIO SET, OAC-ifs, driver-pp . . $\$ 1$ 25 GERMANIUM \& SILICON DIODES, no test $185 W$ SILICON PWR TRANSTR, nPn, Ike 2N1212 $\$ 1$ 40 WORLD'S SMALLEST COND., to $.05 \mathrm{mf} \cdots 31$ 4 TRANSISTOR TRANSFORMERS, asst, worth $\$ 25 \$ 1$ 1 FILAMENT TRANSFORMER, 117 to $6.3 \mathrm{vet}, 3 \mathrm{~A} \$ 1$ $\$ 25$ RELAY SURPRISE, sealed, tiny types 3 INFRA-RED DETECTORS, with leads $\$ 1$ $\$ 25$ SURPRISE PAK, transistors, rect, diodes, ete. $\$ 1$ 40 PRECISION RESISTORS, $1 / 2,1,2 W ; 1 \%$ values $\$ 1$ 30 CORNING "LOW NOISE"' resistors, asst. . \$1 60 TUBULAR CONDENSERS, to .5 mf , to 1 Kv , asst \$1 40 DISC CONDENSERS, 27 mmf to .05 mf to 1 KV \$1 GO TUBE SOCKETS, receptacles, plugs, audio, etc. \$1 30 POWER RESISTORS, 5 to 50W, to 24 Kolims. $\$ 1$ 50 MICA CONDENSERS, 10.1 mf , silvers too! . $\$ 1$ 10 VOLUME CONTROLS, to 1 mer, switch tool. \$1 10° ELECTROLYTICS, to 500 mf , asme FP \& tubulars\$ 50 RADIO \& TV KNOBS, asstd. colors \& styles . $\$ 1$ 10 TRANSISTOR ELECTROLYTICS: 10 mf to $500 \mathrm{mi} \$$ 50 COILS \& CHOKES, if, rf, ant, osc, \& more . . $\$ 1$ 35 TWO WATTERS, nast inct: A.B., 5 \% too! . . . \$1 75 HALF WATTERS, asst incl: A.B., 5% too! : \$ 60 HI-Q RESISTORS, $1 / 2,1,2 W, 1 \% \& 5 \%$ values $\$ 1$ 10 PHONO PLUG \& JACK SETS, tuners, amps . . $\$$ 50 TERMINAL STRIPS, 1 to 8 solder lug types . . $\$ 1$ 30 "YELLOW", MYLÁR CONDENSERS, asstd val \$1 60 CERAMIC CONDENSERS, discs, npo's, $10.05 \$ 1$ 3-TRANSISTOR SUBMINIATURE AMPLIFIER \$1 10 TOP HAT RECTIFIERS 750 Ma silicon, $50-400 \mathrm{~V}$ \$ 30 MOLDED COND's, my?hr, porc, black beauty \$
3 GEIGER COUNTER DETECTOR, tubes, assorted \$ 3 TRANSITRON TRANS'TRS, 2N341, 42, 1W, npn \$1
Full Leads Factory Tested \& Gtdl U.S.A. Mfk.
include postage-avk. wf. per pak
include postage-a 30 days. CODS
125% bated net $\quad \square$ CATALOG $10 \times$
P.O. BOX $942 \times$

SO. IYNNFIELD, MASS.

AT THE FAIR

NEW JERSEY PAVILION

A satellite tracking station in operation is included among the attractions at New Jersey's showcase. Worth taking a look at, if you're nearby, to round out your understanding of space science.

NEW YORK CITY PAVILION

The biggest city's municipal radio station. WNYC, and its UHF television station, Channel 31, have established operating studios in the pavilion which can be watched in action by visitors. Moderately interesting.

RADIO CORPORATION OF AMERICA PAVILION

The RCA exhibit is actually an operating color TV broadcasting station, providing coverage and programming for the entire World's Fair via closed-circuit TV. Visitors to the RCA exhibit, astride the Fair's main entranceway, are given a good look at what it takes to put color on the

COLOR CONTROL-Nerve center of all the color television activity at the RCA Pavilion is this ultra-modern control room, where producers, directors and technicians work in full view of visitors touring the exhibit.
air-the studios, the control rooms, and the other equipment. They also see themselves on TV and may even take part in one of the Fair telecasts. An excellent primer on modern video broadcasting.

SERMONS FROM SCIENCE PAVILION

The marvels of ultrasonics, infrared technology, magnetic recording, photoelectronics, and other electronic wonders are used to get across a religious message. A good show with an evangelical twist.

SINGER BOWL EXHIBIT CENTER

Singer Co.'s computer, electronic, and home entertainment products get a showcase in the grandstand structure of the World's Fair's own miniature stadium. The home entertainment instruments, including a full line of stereophonic phonographs and FM radios, are demonstrated. An interesting display.

TOWER OF LIGHT PAVILION

"Holiday of Light," a lively new musical review, is offered at the Tower of Light, the electric utility companies' exhibit for 1965. The show, which uses a variety of techniques including spectacular lighting effects, a lively original musical score and new script, takes place in seven show chambers. Visitors, seated in newly installed revolving seats, will spend about two minutes in each chamber as they are transported through the show on a giant electrically powered turntable. This exhibit is a must because of its unique presentation in telling the story of light.

HOLIDAY WITH LIGHT, the new lively show at the Tower of Light Pavilion, is only one star attraction of several. At night, ever-changing, multi-colored lights bathe the building in a myriad of colors creating a breathtaking visual effect.

TRANSPORTATION \& TRAVEL PAVILION

Armed Forces: In separate exhibits at the T\&T Pavilion, the Air Force, Army, and NavyMarines tell their various stories. These stories include the electronic tools used by the Armed Forces and the training of the men who use and maintain them. A valuable stop if you are on the verge of going into the service and want to know what's available in the electronics career fields.

Cinerama: A 360° Cinerama presentation, "To the Moon and Beyond," is a film that will grab you up in spite of yourself. In addition to simulating a voyage through space to the moon, it provides a rundown on the various space vehicles now or soon to be in use, and it explores the elements of science. The 360° process even puts you within the nucleus of an atom! The super-high-fidelity sound system, composed of a number of large speaker systems circling the auditorium, contributes as much to the impact of this unusual film as does the hemispheric projection technique. A worthwhile film feature of the Fair.

UNITED STATES PAVILION

Uncle Sam's personal show at the World's Fair includes a veritable grab-bag of electronic wonders. There are videotape teaching machines that you can try, actual unmanned spacecraft, oscilloscopic reproductions of celestial noise and the sounds of a snail. You will see facsimile picture transmission equipment, the electronic gea: used in meteorology. The Pavilion's ride, a mobile movie show through the American saga, ends in the space age, where you get a realistic impression of U. S. satellites falling through the void as they send out their radio messages. As a wrap-up, there is a final stop at the Pavilion library, where a giant Univac computer can be queried on a wide range of American historical questions. Altogether an interesting show, though somewhat bewilderingly pot-pourrified.

UNITED STATES SPACE PARK

The most complete tour of the nation's space effort you can expect to receive, short of a visit to every single installation of the National Aeronautics and Space Administration, is offered to you at the Fair's Space Park. All of the booster rockets and space vehicles of the past and the immediate future are represented either by actual copies of full-scale mockups. This includes one of the Mercury capsules, Aurora 7, in which Scott Carpenter circumnavigated the globe. Junior astronauts can climb into a full-scale model of a Mercury capsule. The various electronic probes, recording, and transmitting systems used by space vehicles are fully explained and illustrated. One of the highlights of the Fair for all age groups.

WESTINGHOUSE TIME CAPSULE II

Westinghouse's contribution to future history, the new Time Capsule, loaded with representative itenss of today's world, will be buried at the close of the Fair right alongside the company's first capsule, which was planted on the last day of New York's 1939-1940 World's Fair. The capsule and its contents, which will be marked "Do Not Open for 5,000 Years," are on display. Included in the treasures to be buried are an electronic wristwatch; an electronically-automated Polaroid camera; a Beatles 45 rpm record; a nickel-cadmium-battery-powered rechargeable flashlight; a transistor radio; a pocket radiation monitor; a chunk of graphite from the first atomic reactor; a computer memory unit; a cryogenic superconducting wire; a ruby laser rod; a ceramic permanent magnet; a solid-state, molec-ular-block electronic circuit; a solar cell from a Vanguard I space satellite; fuel cells; and a collection of tape recordings of famous sounds and voice of the past quarter-century. More a monumental conversation piece than an exhibit, the Time Capsule collection is neverthless a startling reminder of how deeply electronics and its related arts have penetrated our every-day lives and thoughts.

23 CHANHEL DUAL CONVERSION CB

All crystals provided for 23 crystal-controlled transmit \& receive channels!

WIRED ONLY Rugged 5 -watt CB transceiver 469.05 with "space-age" 23 channel frequency synthesizer. Gives you bullseyes two-way communica. tion in both fixed and mobile locations with equal ease. At your dealer now, the EICO Sentinel 23 is the new CB rig with every wanted and useful feature!

- Transistorized 12 VDC \& 117 VAC dual power supply ellminates vibrator hash.
- Super-selective dual conversion superhet requires $1 / a \mathrm{uV}$ for $10 \mathrm{db} \mathrm{S} / \mathrm{N}$.
- Crystal-controlled 6 mc IF and three 455 kc IF's.
- Effective automatic impulse noise limiter, wide-range AGC.
- Delta tuning for receiving off-frequency transmissions.
- Adjustable squelch and standby switch.
- Illuminated "S" meter/RF output meter.
- Single knob channel selector with Illuminated dial.
- Converts to 3.5 watt PA system with remote speaker.
- TURNER 333 noise-cancelling ceramic p-t-t mike.
- Headphones/external speaker jack.
- Scuff-proof textured blue vinyl finished steel cabinet.
- Anodized extruded aluminum panel with polished edges.

Your ol' Bookworm is squeezed for space because of the number of other articles your Editor is jamming into this issue. But don't fret, I've picked out three new releases that are worth knowing about. In the October/November issue of Radio TV Experimenter we will be back to full size and jammed packed with mucho reviews.

Lights! The trouble with far too many project books for the home experimenter is that part values for circuit components are often omitted, or when they are included the experimenters will have a tough time finding a "Framus Gettus CB-24" super deluxe transistor even if he could afford the $\$ 29.71$ price. Lafayetle Radio has put an end to all this by publishing Photocell Applications by Rufus P. Turner. Over 46 classic

circuits in seven chapters come complete with circuit description and have complete parts lists (like Radio-TV Experimenter). Lafayette has gone one step further, they include Lafayette part numbers for all parts, so that if you are inclined to purchase some or all of the parts from Lafayette, ordering is simplified. To give you an idea of what is in this book, let the table of contents do the job: Photo-electric Devices and Char-acteristics-photoelectric operation, specifications and care of photocells; Test In-struments-various types of light meters, turbidity meter, RF wattmeter, counter, tachometer; Signal Generators-AF and RF oscillators, frequency standard, spinning disc tone generator, light controlled neon oscil-
lator; Photoelectric Relays—photovoltaic relays, phototransistor relay, powerline operated AC and DC relays, etc: Control De-vices-light-coupled switches, photoelectric potentiometer, ncon photocell choppers, light to AC converter; Communications Devices -sun-powered broadcast receiver, sun-powered transistor and tunnel diode transmitters, sun-powered telephone, etc; Miscellaneous and Experimental-sun-powered DC motor, light monitor, DC voltage amplifier, memory circuit, etc. To get your copy of Photocell Applications, write to Lafayette Radio, Dept. RE-48, 111 Jericho Turnpike, Syosset, L. I., New York; order publication number 100102.

SWL'ers Special. The 19th edition (1965) of the renowned World Radio-TV Handhook is hot off the press. It is the only

book available to short-wave listeners, broadcast station operators, hams, etc. that contains details on every short-wave and TV station throughout the world. All of this information is arranged by class of service to place as much practical information as possible at the fingertips of the reader. Radio stations in each country are identified by call and frequency, station personnel and addresses are given; as well as, radiated power, programs and languages, license fee, identification signals, and network affiliation. In the listing of TV stations, information is given on type of signal, polarization of the antenna, picture and line frequency. The 1965 edition of the World Radio-TV Handbook is 20 percent larger than its previous edition-totalling 302 pages. The World Radio-TV Handbook is distributed in North America by Gilfer Associates, P. O. Box 239, Park Ridge, N. J. 07656. Sold for $\$ 4.95$ postpaid. The 1965 edition is also available in numerous book stores and radio parts jobbers from coast to coast. This one belongs on every SWLer's bookshelf.

Space Communications. Ever since the launching of the first Echo satellite, communications people have been looking to or listening to the heavens. Radio amateurs as

166 pages
Soft cover \$3.95
well as military and commercial agencies have cooperated in the development and use of active and passive communications satellites.

After three years of successful and dramatic accomplishments, the field of space communications has arrived at a consolidating phase. Time and effort will be devoted primarily to improving methods, techniques
and equipment now in use or under development. It is a good time for an accurate status report to be found in a new Rider paperback called Space Communications prepared by a top-notch author in the field.

This book, written by Stanley Leinwoll, describes what has been accomplished in the field of space communications and what can be expected in the immediate future. It is of practical interest to the radio amateur, the shortwave listener, and the informed layman who wants to understand space communications. The book explains how active and passive communications satellites work, and how one can participate actively in some of the many space projects now being conducted.

Full chapters are devoted to the flight of Mariner II, OSCAR flights, joint space efforts with international cooperation, direct broadcasting from earth satellites, space listening and the radio amateur in space. An appendix gives pertinent excerpts from the Communications Satellite Act. Throughout, photographs and illustrations enliven the text. (John F. Rider Publisher, Inc., 116 West 14th Street, New York, New York 10011.)

EARN WHILE YOU LEARN - Since 1935 Christy Trades School has been teaching the profitable Appliance Repair business. You learn by working with your hands. Your Christy Tester locates trouble, CTS course shows you how to fix it, what to charge, how to solicit business.

MAKE MONEY RIGHT FROM THE START

Many of our students pay for their course before they complete it. How? Because right from the beginning they are shown how to make actual repairs! Thousands testify the CTS caurse is easy to understand.

READ WHAT MR. PIPPIN SAYS!

Mr. Marion A. Pippin, Decatur, III., writes: "My business is getting better all the time." Mr. Pippin is building a real business in hisfix-it shop. You can do the same with CTS training.

SENDCOUPON TODAY!

 ELECTRONIC
TESTING KIT
FURNISHED
SEND FOR
FREE BOOK
how tells you
how to it

By Leo G. Sands

Radio-TV Experimenter brings the knowhow of electronics experts to its readers. If you have any questions to ask of this readerservice column, just type it on the back of a 4 postal card and send it to "Ask Me Another," Radio-TV Experimenter, 505 Park Avenue, New York, New York 10022. The experts will try to answer your questions in the available space in upcoming issues. Sorry, the experts will be unable to answer your questions by mail.

Calling CB

How can I modify a CB set so I can use it for paging?
-J. C. P., Newark, N. J.
The speaker circuit of a typical CB set is shown in the top drawing of the two schematics. When the transmit-receive relay (or switch) S is in the R (receive) position the speaker is connected. In the T position, the speaker is disconnected and the cathodes of the transmitter tubes are grounded.

To modify this circuit for paging an s.p.d.t. switch is added and the circuit is rewired as shown in the bottom schematics. Here S1 is the transmit-receive relay (or switch) and S2 is the added switch. When S2 is in the "normal" position, the set operates as before. When set to the PA position, the set's own speaker operates when receiving and the external paging speaker operates when the transmit switch is pressed. But, the transmitter won't go on the air except when S2 is in the "normal" position and the transmit button is pressed.

Tube Stretcher

I have heard of a gadget I can use with a TV set to increase tube life. What is it and where can I get one?
-E. D., Jackson Heights, N. Y.
The Wuerth TV Life Saver shown in the photograph should be available at radio parts stores. It is plugged into the electrical outlet

and the TV set plug is inserted into the gadget. When the set is first turned on, a resistor is connected in series with the AC line to cut the voltage reaching the set. After the resistor gets hot, a pair of contacts close and full voltage is applied to the set. It should greatly increase tube life.

It Ain't Easy

I would like to change my $30-50 \mathrm{mc}$ band FM receiver to cover the $152-174$ mc band. Can this be done?
W. C., East McKeesport, Pa.

It probably can be done by changing the RF, mixer and oscillator coils. Try coils with about one-fourth as many turns. You will need a good RF signal generator to permit adjusting the coils (number of turns and spacing of turns) and re-aligning the trimmers. You can set the tuning range limits with the signal generator.

Be a UHF Copycat

What type of antenna is best for reception of weak UHF translator TV stations?
F. B., Las Vegas, Nev.

A parabolic, Yagi or corner reflector antenna will give you considerable gain but must be accurately aimed at the station. Since these antennas have relatively narrow frequency range, they cannot be used to cover the entire UHF TV band. These antennas are fairly inexpensive ($\$ 5$ to $\$ 25$).

Blame the Outlet

I often receive a broadcast station with good signal strength but with background static loud enough to be annoying. There are no electrical appliances operating. It there any way to reduce this static?
-M. L., Fresno, Calif.

Try tuning in a strong local station. The noise should be greatly reduced. The noise could be coming over the power line. Try a line filter (Cornell-Dubilier IF-6, etc.) between the power outlet and the set's power plug. If the set has a loop antenna, rotate the set or the loop for minimum noise and maximum signal.

Hm mm mmm

I get a lot of hum on my AM-FM radio. Is there any way of getting rid of this hum? I do a lot of taping from the radio.

> -A. S., Cleveland, Ohio

With the tape recorder disconnected, if the set still hums, chances are that it is due to dehydrated electrolytic filter capacitors or insufficient filter capacity. Try connecting a new filter capacitor across each section of the filter capacitor (one at a time) and note if there is any decrease in hum. On the other hand, if the hum is present only with the tape recorder connected, make sure that all of the cable shields are correctly grounded.

S Reading Without AVC

I have an old short wave receiver that doesn't have an AVC circuit. I would like to add an S-meter but all the S-meter circuits l have read about require a connection to the AVC line. Could you tell me how I can add an S-meter to my receiver?
-G. R., Crete, Ill.
If your receiver does not employ a superheterodyne circuit, or is so old that it does not have AVC, it probably employs a grid leak or plate detector using a triode, tetrode or pentode tube. While not a true S-meter, you can add a meter in the detector cathode circuit which will sense the presence of a

LK-488-48.Wath Steréo Amplifier Kif $\mathbf{3 1 2 9 . 9 5}$

Save money a. . build the world's best stereo . . . with grat new stereo kits from Scott. Scott's lull-color instruction book and matching Part-Charts make thelm a breeze to put together... and, they'il give you anfif your tamily years of trouble-free enjoyment. The LK-48B stereo amplifier Includes a switched frant panet headphone output and dozens of othgr" unique Scott leatures. The LT, 1108 FM stereo funer incorporatestamous Scott Sonic Monitor, factory-wised, silver-plated front end and-Tlme.Switching multiplex.

FREE 24 PAGE BOOKLET

Rush me free Scott's 24 page Custom Stereo Gulde. Name.

H.H. ScotI, Inc., 111 Powdermill Road, Maynard. Mass. $565-02$

SSSSHHH! STOP THAT NOISE in your radio reception!

If "radio racket" is spoiling your listening pleasure, read about a sure-fire cure for this problem in

ELEMENTARY ELECTRONICS
 FALL EDITION

on sale NOW at your newsstand.

The schematic diagrams and easy-to-understand text that make up EE articles won't make you an electronic wizard overnight. They will make you conversant-even versatile-in this fascinating subject.
If your newsstand is sold out you can write for your copy (adding 25¢ for postage and handling).
Send \$1 to--
ELEMENTARY ELECTRON/CS ${ }_{\text {Dept. } 751}$

505 Park Avenue

ASK ME another

radio carrier and relative indication of its strength.

In the case of a grid leak detector, the cathode is grounded to the chassis. Break the cathode-to-ground lead as shown at X

in the diagram and connect capacitor C1 (0.1 to 0.25 ufd) from cathode to ground. Connect O-1 DC milliammeter and M1 and 250 -ohn potentioneter RI across capacitor Cl as shown in the diagram. Adjust R1 so that meter M 1 is shorted out (minimum resistance) and, with the set turned on but not tuned to a signal, adjust R1 so that meter M1 reads full scale. When you tune in a signal, the meter reading should drop. The stronger the signal, the greater the drop in the meter reading.
If the receiver uses a plate detector, break the cathode resistor lead as shown at X in the other diagram and insert meter M2 in

series with the resistor and chassis ground and 250 -ohm potentiometer S 1 across the meter. When tuned to a very strong local signal, adjust RI for full scale meter reading. When there is no incoming signal, meter M2 reading should be very low, rising with a signal to a level depending upon the strength of the signal. It might be necessary to use a more sensitive meter in some receivers.

Go American (Canadian)

Why do some receiver mamufacturers make their receivers so they won't tune to 540 kc (limited to 550 kc)? There are 16 American, 8 Canadian, 1 Cuban, 2 Mexican, 3 Italian and many other foreign stations operating on 540 kc . Also, why do American made receivers cost so much more than foreign made sets?

-T. M., Red Bank, N. J.

Congress recently passed a law requiring TV sets to be capable of tuning in all TV channels in both the VHF and UHF bands to prevent discrimination against UHF stations. Let us hope that action by the Congress won't be necessary to get receivers that will cover the entire broadcast band. The stations operating on 540 kc must be quite upset about it.

American made receivers cost more than most foreign made receivers because of higher labor costs. If American manufacturers must pay $\$ 2$ per hour or more for assembly labor, they must charge more for their products than foreign manufacturers who pay much, much less. Foreign made sets cost more here than in the country of origin because of import duties and shipping costs. The importation of foreign radios has had a serious effect on America's radio industry. Philco, at one time, it is reported, built about 25% of the world's radios. Now their share of the market is very much smaller. In fact, the huge Philco plant at Sandusky, Ohio, where most of the radios were made, has been closed down. Even if they cost more, we should continue to buy American made radios in order to help our own economy. The same holds true for our Canadian friends.

DX Pick-up

Which would be of more value 10 a short wave listener, a "Q" multiplier or a preselector?
$-R . T$., Vineland, N. J.
A "Q" multiplier improves the selectivity of the receiver between the front end (RF amplifier and mixer) and the detector. It will enable you to separate one weak signal from another weak signal separated in frequency from one another.

A preselector improves the selectivity ahead of the receiver (between the antenna and the receiver). It will improve the rejection of strong unwanted signals, preventing

Thinking of college and a space age career in electronics?

Send for this booklet on
ENGINEERING TECHNOLOGY
AND ENGINEERING
Learn how you can prepare for a dynamic
career as an electrical or mechanical engi-
neering technician or engineer in such
exciting, growing fields as avionics, mis.
siles, reliability, control, fluid mechanics,
data processing, metallurgy, microelectron-
ics, and advanced aerospace research.
MSOE offers residence study programs
leading to these degrees in engineering
technology and engineering:
2 years - Associate in Applied Science
4 years - Bachelor of Science
Also get facts about scholarships and fi.
nancial aids, job placement and other
student services, plus photographs of
MSOE technical laboratories and
student activities. For your copy,
just mail the coupon -
no obligation.

MSOE

Milwaukee School of Engineering

Milwaukee School of Engineering Dept. RTX-865 1025 N. Milwaukee Street Milwaukee, Wisconsin 53201
Please send the "Your Career" booklet.
l'm interested in
\square Electrical fields $\quad \square$ Mechanical fields

Name. \qquad
Address..
City. \qquad ZIP...........

Keep up with your favorite interest by having RADIO-TV EXPERIMENTER sent to your home. It's easy-just mail the coupon. 1 year: $\$ 4$. Radio-TV Experimenter 129
505 Park Ave., N. Y., N. Y. 10022
Please start my subscription today. I enclose \$4. \square Bill me. name address city
state \qquad zip code

ATTENTION FISHERMEN!

(Who want to take more fish)

Don't miss the

12 EXCLUSIVE TRICKS TO BIGGER CATCHES

in FISHERMAN-Fishing \& Tackle Show Issue on sale now at newsstands everywhere-75\$

Or we'll rush your copy to you by mail! Send $\$ 1$ (to cover postage and handling) to

FISHERMAN

505 Park Ave., New York, N.Y. 10022.

ASK ME another

overloading of the receiver which makes it less sensitive to weak signals. However, it won't help you separate weak signals as well as a "Q" multiplier.

You need both!

Preamp Power Supply

How can 1 build a power supply for a preamplifier requiring 125-135 volts DC at 7 ma . and 6.3 volts $A C$ for the filament of a 6CB6 tube?
-G. W., Toledo, Ohio
A circuit diagram is given below. Pick diodes with a PIV (peak inverse voltage) rating of around $350-400$ volts for maximum reliability. Mount the transformer in a metal chassis so the heat will be conducted away.

Stick To Dry Cells

Can you draw a diagram and give me a parts list for a power supply for a portable tape recorder which uses two $1.5-\mathrm{volt}$ flashlight cells?
J. G., Galveston, Texas

You can use a 6.3 -volt filament transformer and a pair of diodes with low forward voltage drop as shown in the diagram. However, you might inject hum into the tape recorder. In view of the low cost and relatively long life of flashlight cells, you might be better off staying with the batteries.

I'took a few sacks of mail from CB'ers and a little table pounding, and here we are with a regular CB column-a column which offers you something a little different in CB fare. We are going to be giving you a CB'er's eye view of some of the more interesting and exciting pieces of equipment which is being designed for CB use. This includes transceivers, antennas, all sorts of accessoriesand some extra special goodies which the manufacturers haven't yet announced. We have our agents (both type 007 and type 36-24-34) well placed inside the design labs around the industry, so things should really be swinging in our little CB corner of RadioTV Experimenter.

Project H.E.L.P. was recently conceived
by the Automobile Manufacturers Association. While, from its title, you might think it's part of the war on poverty, it's more a part of the war on powerless vehicles on the nation's roads. The idea is to equip as many cars as possible with 11-meter transceiversand do it right at the new car dealer. The specially constructed CB rigs will be optional equipment on all new cars coming from Detroit.

First manufacturer to design and build one of the transceivers to be intended for Project H.E.L.P. was United Scientific Laboratories, Dept. R78, Division of Vernitron, 59 Central Avenue, Farmingdale, L. I., N.Y. Adding to the other new CB rigs in USL's "Contact" series, the USL "Contact Help"

The quality of Telex headsets has become well known to hams over the last twenty-five years. Here are three Telex headsets that deliver the kind of top grade performance that hams expect from Telex-

MAGNA-TWIN
For absolute maximum intelligibility under difficult QRM conditions . . . Super-comfort foam cushions... Rugged, moistureproof magnetic drivers give broad response, excellent sensitivity... Sturdy construction of high impact plastic.

TELESET
Lightweight, economy version of the famous Magna. Twin... High performance, shock-proof Magna.Twin drivers... Designed especially for ham requirements.

MONOSET
Feather-light at 1.2 oz. . . . Eliminates headset fatigue... Sound from replaceable driver is fed directly into your ears through adjustable tone arms... Telex quality construction assures reliability.

Write for descriptive literature today.

THE FUN'S AFLOAT!

and there's a whale of a lot of fun in the current issue of

BOATCRAFT

 [10That's where you'll read all about\star TUG-0'.WAR ON WATER \star OBSTACLE RACES \star NIGHT BOATING \star DOCKING CONTESTS
and the exciting nautical sport of Jousting

MAKE A buddy of your boat! boatCRAFT'S BIG CRUISING ISSUE SHOWS yOU how! on sale now at all Newsstands. only 75¢́.

> BOATCRAFT, Dept. 749 505 Park Ave.

New York, N. Y. 10022

To Our Readers!
 FOR THE TOPS IN ELECTRONIC READING LOOK FOR THE October-November edition of RADIO-TV EXPERIMENTER.

The October-November edition will be on sale August 26 at newsstands every. where. Buy your copy and keep abreast of projects, news and experiments.

Remember! You have a date with RADIO-TV
EXPERIMENTER on Aug. 26 at your local newsstand.

RIGS and RIGAMAROLE

Amphenol C-75 1-watt Hand-Held rig
will be offered to the mobile market for less than $\$ 100$ (relatively low priced in today's market).

Smaller than a telephone book, and tipping the scales at less than 5 lbs ., it dimensions are $10 \frac{1}{2} 2^{\prime \prime}$ wide, $31 / 4^{\prime \prime}$ high, and $8^{\prime \prime}$ deep, Accessories include a featherweight hand microphone with a push-to-talk button, a 12 volt cord for cigar lighter plug-in, and a special theft-proof mounting bracket.

In the technical department, the unit is comprised of a 5 -watt transmitter combined with a sensitive receiver, both crystal controlled on the special Project HELP channel plus six additional regular CB channels. Also included is a squelch control to keep the set silent while you motor along, safe in the knowledge that road assistance or directions are only a mike-button away.

If your interest in CB lies in the realm of hand held transceivers, we have two new units from Amphenol-Borg, Dept. 48R, Distributor Division, 2875 South 25th Avenue, Broadview, IIl.

Both the C-60 and the C-75 transceivers use sensitive superhet kilocycle inhalers to insure good reception even under the hairiest conditions; detecting signals as weak as one microvolt (this is equal to the capabilities of many regular 5 watt base stations). The

C-75 unit has an adjustable squelch and an automatic gain control. The C-75, which is a full 1 -watt set, also has the advantage of being constructed of separate modular components. If, say, the transmitter should malfunction, it is merely necessary to unplug the entire transmitter section and bring it to your local Amphenol dealer who can promptly plug another module into your C-75 while the original one gets taken care of at the factory.

The C-60 unit is a lower power version, using 100 milliwatts input combined with a sensitive receiver.

Both units are encased in high-impact plastic, operate on two channels, and obtain their power from either penlite cells or rechargeable nickel-cadmium batteries.

Price for the C-75 is $\$ 114.50$, while the $\mathrm{C}-60$ is $\$ 89.50$.

CB Boating seems to have achieved a peak of popularity this season and here is an advance scoop on a brand new marine CB antenna called the Silver Dolphin. It's produced by Mosley Electronics, Inc., 4610 N. Lindbergh Blvd., Bridgeton, Mo. 63044.

It's a half-wave job with an overall height

United Scientific Laboratories Contact Help HELP plus 6-Channel Transceiver
of 8 ft . 5 inches, made from anodized aluminum for complete rust and corrosion proofing. Mounting provisions include the polystyrene base, plus the option of being able to use a swivel mount. For temporary mounting may be used in conjunction with a special "Dolphin" base, this has a clamp mounting.

A distinctive feature is the ability for the antenna to be tilted over for flesh-deck mounting when necessary.

The manufacturer guarantees (in writing) that not only will it be free from material defects for two years, but that it will equal or out-perform other CB marine antennas now on the market.

You CB-yachtsmen might throw a binocular in the direction of the Silver Dolphin to see what it has to offer for your particular installation.

Here's your new catalog of quality electronic kits and assembled equipment . . . your shop. ping guide for TV set kits, transistor radios, voltmeters, scopes, tube testers, ham gear, PA systems, and a host of other carefully engineered products. Every item in the Conar catalog is backed by a no-loopholes, money-back guarantee. It's not the biggest catalog, but once you shop its pages you'll agree it's among the best. For years of pleasurable performance, for fun and pride in assembly, mail the coupon. Discover why Conar, a division of National Radio Institute, is just about the fastest growing name in the kit and equipment business.

wew
 products

New Transistorized Speech Clipping Microphone

A revolutionary, speech clipping, communications microphone, the $\mathrm{D}-501 \mathrm{~K}$, a hand-held style with press-to-talk switch, especially suitable for mobile applications, is now being offered by American Microphone, Division of Electro-Voice, Inc. The twotransistor D-501K may actually double "talk power" when used with virtually any CB, amateur, or other two-way communications equipment. The microphone can easily be substituted for the original unit on most transmitters. It contains transistor circuitry to provide a variable amount of speech clipping for maximum intelligibility and high

output level. By clipping peaks of vowels which contribute least to intelligibility, it is possible to increase modulation level of consonants, which largely determine clear speech and thus considerably increase average output. The internal transistor amplifier provides gain in excess of the insertion loss in the clipping circuit. In day-to-day use, the cast aluminum case of the model D-501K provides excellent protection without making the unit uncomfortably heavy. The reliable push-to-talk switch and the comfortable hand-held design combine to assure the operator of effortless, efficient use. Grille design protects the internal element from accidental damage and infiltration of dust and foreign particles. Power for the D-501K clipper and
amplifier is supplied by an internal long-life cell. Under normal conditions of use, this cell will last several months, depending on the actual amount of use and when exhausted, it can be replaced quickly and inexpensively. The model D-501K output level is adjustable through the use of an internal potentiometer which also sets the degree of clipping. Use of this control allows adjustment for the proper input level for virtually any type of transmitter equipment. The frequency response is 100 to $5,000 \mathrm{cps}$ and is shaped for maximum intelligibility. List price of the D-501K is $\$ 49.50$. (For complete specifications write to Electro-Voice, Inc., Dept. LKI, Buchanan, Mich.)

500 Watt Ham Transceiver For Mobile or Fixed Stations

The new SR-500 "Tornado" transceiver made by The Hallicrafters Co. provides the amateur operator with high-performance SSB and CW operation on the three most popular bands; $80 \mathrm{M}, 40 \mathrm{M}$, and 20 M . Lower sideband is used on 80 and 40 meters and upper sideband on 20 meters. The 500 watt P.E.P. unit has an amateur net price of $\$ 395.00$. The transceiver incorporates Hallicrafters' exclusive Amplified Automatic Level Control (AALC) which prevents "splatter" often caused by final amplifier

"flat-topping." The receiver section contains the proven Hallicrafters Receiver Incremental Tuning Control (RIT) which allows the operator to tune the receiver up to 3 kc . to either side of the transmitter frequency. All
jacks and switching for linear amplifier operation are included as well as a combination "S" meter/RF output indicator. Dial calibration is in 5 kc . increments, which are accurate to less than 2 kc . between 100 kc . points after indexing. The VFO has a 500 kc. tunable range, which is stable to within 300 cps after warm up. Sensitivity of the receiver is 1 microvolt for $20 \mathrm{db} \mathrm{S} / \mathrm{N}$. Audio response is 600 to 2800 cps at 3 db , and audio output is 2 watts at 3.2 ohms. Operating accessories for the SR-500 include the HA-16 VOX adapter; a P-500 AC power supply for base station operation and a P-500 DC power supply for operation from a 12.6V DC power source. A special MR-160 mobile installation kit is also available which includes all inter-connecting cables. (For more information on the SR-500 Tornado write to the Hallicrafters Co., Dept. TV51, Fifth and Kostner Avenues, Chicago, Ill. 60624.)

Transistorized Inverter Puts Household Current in Your Car

Operation of portable television sets, radios, lights and other small household appliances in areas out of reach of AC outlets is now possible with the use of the new Electro electrical inverter that plugs into your car's

lighter socket. The Model TI-100 Inverter, manufactured by Electro Products Laboratories, Inc., Chicago, has an output of 117
volts, 60 cycles AC with capacity of 125 Watts-ample power to handle many household appliances such as P.A. systems, ham gear, small power tools, recorders, shavers and other appliances from DC voltages in automobiles, boats, trucks, trailers and emergency vehicles. A unique charge-indicator light glows while unit is operating and shows condition of the car battery. The cords total 12 feet in length and include cigarette lighter attachment for simple plug-in operation. The unit operates in any position and is designed for high efficiency at higher output loads, and battery strain, allows 20 -volt regulation, no-load and full-load, and frequency regulation of 5 cycles. Overall size of unit, $31 / 2^{\prime \prime}$ high, $61 / 4^{\prime \prime}$ wide, $61 / 4 " ~ d e e p ; ~_{4}$ weight $63 / 4 \mathrm{lbs}$. Priced at $\$ 39.95$. (Write for Free Bulletin Tl-265 available from Electro Products Laboratories, Inc., Dept. 751, 6123 Howard Street, Chicago, Ill. 60648.)

Plug 'n Play Converter/Charger For Dry Cell Devices

Plug 'n Play makes any cordless device rechargeable, even those using common "flashlight" (carbon-zinc, alkaline or mercury) batteries. It recharges the device automatically when it is not in use and allows the device to be operated directly from ordinary 110 -volt household current. Suitable for use on transistor radios, tape recorders, phonographs, electric toothbrushes and shoebrushes, children's toys, movie cameras, electric knives and all types of cordless devices and appliances, it will extend battery life from fifteen to fifty times the normal. It consists of a miniaturized converter/charger contained within a wall plug only slightly larger than the ordinary appliance plug. An electric cord from the charger ends in a jack which plugs into the cordless device for recharging or operating directly from the household current. All AC current is isolated within the wall plug by means of a transformer, meeting UL standards. Rated at 6.5 volts, 20 ma , Plug 'n Play comes complete with a plug adapter for rapid connection to portable tape
producls

recorders and transistor radios. Priced at $\$ 5.95$. (For more information write to Dynaınic Instrument Corp., Dept. R75, East Bethpage Road, Plainview, L.I., N.Y.)

Tape Deck
 Is Module Packed

The newest addition to Mortel Electronics quality line of Uher tape recorders is the new Uher 9000 Tape Deck. The secret behind what may be the most revolutionary tape deck currently on the market today is the exclusive computer designed modules-record, playback, equalizer, power pack and push pull RF bias oscillator circuit. Each module is tested separately and then retested when combined in the package. In addition, each

tape deck comes with its own testing certificate and original frequency response curve sheet. Other exclusive features are: playback equalization curve, that by a single flip of a switch, you can get either CCIR or NARTB standards; a powerful hysteresis synchronous motor; 4 track; separate crase, record and playback heads as well as separate level controls for each channel; monitoring of sound as well as recording by a flip of the $A B$ switch; sound on sound switch; illuminated VU meter; tape tension control (guaranteeing lowest wow and flutter while automatically removing any foreign particles of dust from tape instantly) ; a vernier adjustment of playback that creates exact azimuthal alignment for every type of tape. Added to these features are tape lifters, end of reel shut-off separate head phone monitor jacks, four-digit counter with automatic reset and 7 inputs. The new Uher 9000 Tape Deck also offers all the marvelous Uher optional accessories such as the famous Akustomat (you speak, machine records; you stop speaking, machine stops-no wasted tape), and the Uher Dia-Pilot (automatic slide projector synchronizer). Other specs worth mentioning are: frequency range, $20-20,000 \mathrm{cps}(71 / 2 \mathrm{ips})$ and $20-$ $15,000 \mathrm{cps}(33 / 4 \mathrm{ips})$; crosstalk- $50-55 \mathrm{db}$; reel size; up to 7 inches; dimensions, 15.3 x 6.8×13-inches; weight, 24 pounds (approx.). Priced at $\$ 499.00$. (For more information write to Madisonville Inc., Dept. 48, 310 Madison Avenue, New York, N. Y. 10017.)

Wireless Intercom Is CB Transceiver

Probably the world's first Citizens Band intercom, the SELECTaCOM, has just been offered by Radio Shack Corporation. The desk-top device is both a wireless intercom and a Citizens Band transceiver. Users of the 100 -milliwatt SELECTaCOM do not have to be on the same AC electrical circuit to communicate, a marked advantage over other wireless intercom systems. The new unit transmits and receives with crystal-controlled stability on CB Channel 5. It can be incorporated into an intercom "net" with any number of similar units, and will receive

NEW in the wonderful world of

knight-kits ${ }^{\circ}$

See the latest solid-state stereo hi-fi, advanced CB 2-way radios-complete selection of electronic kits for every need, including Hobby, Short-Wave, Amateur, Automotive, Intercom, Test Instrument -wonderfully easy to build, at very substantial savings.
EASY TERMS:
Use the Allied Credit Fund Plan-over 24 months to pay.
satisfaction guarantasd or your money back

send today for your

 ALLIED 1966 CATALOG
508 VALUE-PACKED PAGES world's biggest selection

SAVE MOST ON:

Stereo Hi-Fi
Tape Recording
CB 2-Way Radio FM-AM \& AM Radios
Portable TV • Phonographs Short Wave \& Ham Gear Automotive Electronics

Test Instruments
TV Tubes \& Antennas
Power Tools, Hardware
Parts, Tubes, Transistors

SEND COUPON TODAY!

```
ALLIED RADIO, Dept. 20-HB
100 N. Western Ave., Chicago, Illinois }6068
\square \text { Send FREE 1966 Allied Catalog}
Name
    #lEasc "mump
Address
```

\qquad

is the smallest, measuring $231 / 8^{\prime \prime} \times 141 / 4^{\prime \prime} \mathrm{x}$ $111 / 2^{\prime \prime}$ deep. It has one B-199A Bass Speaker and a single B-200Y unit, with an LC crossover 6 db per octave at 2500 cycles. Frequency range is $50-16,000$ cycles, impedance 8 ohms, and recommended amplifier power 20 watts or more. CONCERTO II and CONCERTO III, Models B-312 and B-313 respectively, use the same cabinet $241 / 2^{\prime \prime} \times 171 / 4^{\prime \prime} \times 121 / 2^{\prime \prime}$ deep. Concerto II is a two-way system based on the B-207A Coaxial speaker having a response from 45 to 16,000 cycles with a 6 -db-per-octave crossover at 2500 cycles. Concerto III, in

the same cabinet as Concerto II, gains a sharper focus of the middle frequencies through the addition of a B-209B Midrange Speaker and N-10102A Crossover Network. This three-way system has a range of 45 to 16,000 cycles and crossovers 6 db per octave at 800 and 2500 cycles. For both Concerto II and III, the impedance is 8 ohms and recommended amplifier power 20 watts or more. Concerto II can be converted to the three-way system at any time, and the standard components can be transferred to a larger enclosure or wall installation. (For complete information, address The R. T. Bozak Manufacturing Co., Dept. RTV40, Darien, Connecticut, 06821.)

Switcheraft Flash—Now you will be able to pick up tangle-free coiled cords designed for replacement of monaural headset cords. Some models are direct replacement for Brush and RCA units. Beautifully designed, the white neoprene coils can extend up to 10 feet. Prices start from $\$ 3.70$. (For more information write to Switchcraft, Bul. 149, 5555 N. Elston Avenue, Chicago, Illinois 60630.)

Your health and life are two things close to your heart; and the smooth and continued operation of the heart itself is now being protected by electronics.

By K. C. Kirkbride

ELECTRONICS GOES TO YOUR HEART

In the early morning hours of October 17, 1968, a slim tall young man walked down the stone steps of his local hospital in Sioux City, South Dakota, his face flushed with warm color, a keen eager look in his eyes as his doctor's words echoed in his ears: "Jim, you've just added ten, fifteen years to your life. Good luck!"

Twenty-four hours before, "Jim" had been dying of a heart attack. His doctor speeded him to the hospital, hoarding the "last moments" with oxygen and adrenalin. Now, less than a day later, Jim could walk out of the hospital, a renewed man, only a tiny wire protruding from his chest under his shirt evidencing the fact Jim no longer has a human heart. Now his blood is pumped through his body by an artificial pump, one that can easily add years to his lifespan.

Sound fantastic? Not at all. For within a few years, almost one million people who would have known certain death in 1965 will not only know the chance to live, but will add whole decades of useful activity to their lives.

The GE heart pacer is shown implanted in the figure above. The leads run up to the heart supplying pulses that regulate the rate of heart beat. The implanted unit is shown at top left; below it is the external unit with its antenna that allows the pacer pulse rate to be regulated. Photo below shows electrodes sutured to the heart.

The circuit of the pacemaker, which is hermetically sealed in a Silastic case, is a basic pulse oscillator. It employs a pnpn complementary fransistor configuration exhibiting negative resistance across the terminals of resistor R1. The charging of capacitor C and its discharge through resistor R1 determines the impulse frequency.

Shown in operation here is the radio frequency cardiac pacemakercurrenilymanufactured by Airborne Instrument Laboratories. The operating frequency is 2 megacycles/ sec. The external antenna electromagnetically couples the radio frequency field through the patient's skin to the receiver coil which applies it, through the electrodes, to the nerve tissue of the heart.

True, they may not be able to "dance all night" or hobby-it-up by watching dawn come up over River House, but they will be capable of useful activity with an extended life expectancy that will shame folks living in our backward 1965 era.

Number-One Killer. For today, electronic, medical and space engineers team up in the most intense scientific effort of our time, outside the man-in-space program (which too may hinge on the artificial heart), to strike down the number-one killer and crippler of our time-heart disease.

In the works already is a whole series of man-made hearts, "hearts" that have powered dogs for hours, even days, most of the man-made pumps fashioned of plastics and driven by compressed air, motors or liquids. Some of the bolder scientists even predict the ultimate "heart" will be motivated by the electrical vibrations of the body iself.

Artificial Heartbeats. Other laboratories evolutionize tiny electronic pulsers, some smaller than a pack of matches, that "manufacture heartheats." These tiny stimulators already pace five thousand people through normal activity every day, people who would
otherwise suffer the symptoms of heart block, and be curbed in their activity to the life of an invalid.

Heart block exists when the electrical functions of the heart weaken from injury, disease or congenital effect so the heart beats too slowly, or in some instances, too fast. The impulse of a normal heart beat starts at a point on the right side of the heart, travels along a bundle of fibers, fans out into the muscle of the two main pumping chambers, causing them to contract. When this electrical conduction system is injured, the heart cannot supply the body the oxygen it needs. And when block lasts over a few seconds, the victim may faint, suffer convulsions or die.

It wasn't until Dr. Paul N. Zoll and his colleagues at Boston's Beth Israel Hospital applied electric shock to heart-block patients in 1952 that our story begins. Though the theory was old, tracing back to Luigi Galvani who first associated electrical currents with living tissue in the 1700 s , to apply it to heart problems was new and startling. The first treatments were successful, and the Doctor reasoned, why couldn't he find some

ELECTRONICS GOES TO YOUR HEART

way electrical nourishment could be supplied the heart on a continual basis.

The First Pacemaker. Dr. Zoll and engineers of the Electrodyne Company designed the first pacemaker, a crude affair compared with our modern day miniaturized versions, but it did pulse energy through electrodes from outside the chest wall to the heart. But these first pacers required so much power that they caused chest muscles to contract, often caused burns on the skin, and sometimes frightened the patients they were meant to help.

Next a heart surgeon at the University of Minnesota, Dr. C. Walton Lillelei wondered why not hook the electrodes into the heart muscle itself and connect the electrodes to a power supply outside the body. But problems plagued this stage, too. Wires coming from inside the body through the skin too often caused infection; patients found it hard to wear the pacer and bathe, harder yet to exercise.

Rescue. Then a number of major-company laboratories and space-age engineers heard of the doctors' struggles and soon laboratories were. rivalling each other creating pacers worn inside and outside the body, pacers that today have saved the lives of thousands.

Newest and probably tops among exter-nally-worn pacers is one recently turned out by Airborne Instrument Laboratories at Deer Park, New York. Built to be carried in a patient's shirt pocket with only a tiny receiver and electrode implanted under the skin, it applies radio waves to aid the sick heart.

The six-ounce, battery-powered radio transmitter pulses radio energy to tiny implanted coils and electrodes attached to the heart. The proud sponsors of this wonder plead its virtues over the implanted variety saying it eliminates the need for bulky implants, that its batteries can be replaced without surgery and its pulse rate and voltages regulated easily.

Better Inside. But pacemaker-pioneer Dr. William M. Chardack of Veterans Hospital, Buffalo, New York, cheers for the implanted version. "Out of sight, out of mind," the Doctor reasons. He believes patients "do not feel psychologically handicapped if they can-

Operation of an implantable auxiliary ventricle is shown in a dog, above. Below, the flexible bulb of the auxiliary ventricle is shown fully inflafed by compressed air.

not see the pacemaker." Too, there is less danger of damage in case of a fall.

Space Aids. The implanted pacer, developed soon after the early external pulsers, was pioneered by General Electric space and missile engineers working with Dr. Adrian Kantrowitz, now with Maimonides Hospital, Brooklyn, New York.

Weighing only five ounces, the GE pacer is 2.5 inches long, 2.25 inches wide, and the tiny wires that thread its main cables, less than two-thousandths of an inch in diameter. But this tiny pacer packs power. Inside are five batteries, two transistors, three resistors, and a capacitor, all sealed in Silastic case.

Implanted by surgery near the patient's waistline, the pacer will tunnel power up through the body to the electrodes attached to the heart to pulse a regulated beat. This placement at the waist is many times preferred by older patients, but younger ones like the pack implanted near the shoulder to

When air is forced into the chamber, above, the ventricle is compressed. Below, the piston movement of an artificial heart inside the chest is displayed on an oscilloscope. The upper curve is the action of the left ventricle and lower curve, right ventricle.

allow freer movement.
When a patient really wants to "jolt" his heart to 75 to 120 pulses a minute, he can switch on a unit GE supplies that can be worn in a shirt pocket, and this outer power supply will transmit energy to the implanted receiver.

But for all the wonders of the modernday pacer, it still has one staggering limitation. Battery power. Even the best batteries wear but five years, then must be replaced by surgery.

Thirty Years. Now the City of Hope Medical Center in Los Angeles, California, announces it has built a pacer that will last thirty years! The secret is outer-power-source recharging by electromagnetic induction. So far experiments have been made only on dogs, but when the pacer is ready for human use, heart-block patients can buy their pulsers free of worry of battery-breakdown.

Dr. Adrian Kantrowitz, above, holds cardiac pacemaker designed for heart rate control. Below, the oscilloscope tube of the threepound Westinghouse Miniscope displays the patient's electrocardiograph. The electrodes are aftached to palms with suction cups.

As revolutionary as these achievements are-creating a meld of medical and electronic efforts to save thousands of livesthere are still thousands more needing electronic help. But the ultimate help, the solution to the presentday soaring heart-disease fatalities must be the seemingly impossible, the seemingly incredible development-a workable, practical artificial heart!

Dogs Live. While the dedicated doctors who try to fashion this breakthrough admit they still have problems, they have created enough wins to be able to predict such a heart in the near future. Already dogs and calves have lived for hours, even days, with plastic versions, while partial implant has kept dogs alive almost one month; one dog, over a month.

Director of Research at Cleveland Clinic Foundation, Dr. W. J. Kolff, famed for his
(Continued on page 110)

Here's an inexpensive receiver, tailor made for the beginner. Itll cost about fourteen dollars to build from all new parts. With a good antenna you'll be able to hear stations from all parts of the globe and send for their acknowledging QSL card to prove it. Interested? No wonder!

The Neophytes' DX'er is a transistorized regenerative short wave receiver with excellent sensitivity and covers the short-wave bands from 4 to 15 megacycles. However, the receiver can be easily modified to cover any band from 500 kilocycles to 30 megacycles. More about this later. Easy to build, it can be built by a novice in eight hours.

The Circuit. Signals picked up by the an-tenna-ground system are coupled into the tuned circuit C2, C3, L1 by the antenna trimmer CI. Stations are tuned using capacitors C2 and C3, the primary and vernier tuning controls, respectively. Operating bias for the detector, Q1, is supplied by resistor R1.

A tickler feedback arrangement is employed in the collector circuit of Q1. Regeneration is controlled by potentiometer R2. Coil L1 is tapped down to match the low input impedance of Q1. Transformer T1 couples the demodulated audio into the twotransistor audio amplifier. The output of the secondary of Tl is fed into the base of Q2 through capacitor C6. Resistors R3 and R4 provide bias for Q2. Resistor RS
adds a measure of stabilization, it's bypassed by capacitor C7. The volume control, resistor R6, is the collector load for Q2. The second audio stage is very similar to the first except that the collector load for Q3 are your headphones.

Mechanical Construction. Before drilling any holes in the case, lightly center punch the spots where holes are called for. Don't use too much pressure when you're drilling or you stand a good chance of cracking the bakelite case. Make the larger holes by first drilling a small hole. then enlarge it with a reamer to the proper size.

Glue a piece of rubber, $21 / 2$ inches by $3 / 4$ inches by $3 / 8$ inches to the inside of the lid for the case. This piece of rubber presses down on the battery when the lid is closed and prevents the battery from shifting. Cement four small rubber pads to the under side of the case; they act as non-skid feet. When you cement the rubber parts to bakelite, use a cement like Ply-O-Bond, which is excellent for this purpose.

Before you mount capacitor C2, attach the ground lug to the frame of the capacitor. Make sure that the mounting screw is not long enough to press against the rotor plates of the capacitor. If you can't find a screw short enough, put several washers or a nut under the head of the screw.

Several washers are used on the shaft of

By Edward A. Morris, WA2VLU

C2 to prevent the plates from being warped when you tighten up on the mounting screws. You can prevent the washers from shifting around by first lightly cementing them over the mounting holes in the frame of C 2 . Then when you position C2 you won't find that the washers won't stay in the proper position long enough to mount the capacitor.

Mount the rest of the controls on the case along with binding posts BP1 and BP2 and phone jack J1. Cut the shafts on the regeneration and volume controls R2 and R6, down to $3 / \mathrm{inch}$. The shaft of the vernier tuning control, C3, should be cut to a length of $1 / 2$ inch.

The Antenna Coil. Wind coil L1 on a $11 / 2$-inch long piece of $3 / 8$-inch o.d. plastic tubing. Coil L1 consists of twenty-five turns of number 26 plain enameled wire, close wound. The coil is tapped ten turns from the ground end. The easiest way to place the tap on L1 is to cut off a measured 36 -inch piece of wire, and place the tap $143 / 4$ inches from one end. This allows for two-inch pig-tail leads. Now wind the tapped piece of wire around the coil form.

Coil L2 is ten turns of number 26 wire close wound over coil L1. Take special note of the fact that both L1 and L2 should be wound in the same direction, be it clockwise or counter-clockwise. Cover the coil windings with a layer of epoxy or Duco cement.

This will keep the coil windings from shifting position. When the windings are dry, cement or mount the coil form in the case. The proper position can be seen in the photographs.

Electrical Construction. Wire the unit according to the schematic diagram. Don't wire in resistor R1 at this time, its exact

Receiver's front panel consists of tuning, regeneration, volume, and power controls.
value will only be determined later. Be sure to observe polarities where indicated.

The transformer specified for Tl in the parts list has a center tap on its secondary. This center tap is not used, and may be cut off near the case.
The general parts layout can be seen in the photographs. Parts are close enough together so that most connections can be made by using the pig-tail leads on the com-

NEOPHYTE'S DX'ER

These top views of the receiver with the cover removed show the location of all the components. Note how the phenolic circuit board, which is secured in the chassis with stand-offs, is shaped to fit around jack Jl .

ponents themselves. Run the leads under the perforated phenolic circuit board.

Although the author used transistor sockets in his model, the transistors may be soldered directly into the circuit if you choose. If you solder them directly, use a heatsink on the leads, and make the connections as quickly as possible to prevent damage to the transistors.

For regeneration to occur, coils L.I and L2 must be wound in the same direction. be it clockwise or counter-clockwise. They must also be wired into the circuit correctly. If you follow the detail winding drawing and schematic, you should have no trouble.

Final Construction. Wire a 50,000 -ohm resistor in series with one arm of a 10 megohm potentiometer. Connect the free end of the fixed resistor, and the center terminal of the 10 megohm pot into the circuit in place of resistor RI. Hook up a 25 - to 50 -foot antenna to the antenna terminal, and plug in your head set. When you turn on the DX'er you should be able to hear a hissing sound at some setting on the regeneration control, R2. The best value for resistor R1 is now determined experimentally; vary the 10 megohm potentiometer and note the results. If the value of R 1 is made too small, the stage will not demodulate the received signal well. On the other hand.
if the value is picked too high, you may not be able to get the set to go into regeneration over all parts of the band.

This means you will have to pick some compromise setting of the potentiometer. When you think you have obtained the best results, disconnect the potentiometer from the circuit, being careful not to disturb its setting. Measure the total value of the 50,000 -ohm resistor and the potentiometer. Replace it with a fixed resistor which has the closest value. A 4.7 megohm value proved optimum for the unit we built.

If you can't get the receiver to break into regeneration, try reversing the leads to L1 or L.2, but not both.

Operation. If you are to get maximum results from the DXer, you should use a good antenna-ground system. A good antenna would be about 50 feet-long, and would be as high as you could get it. A ground need not be more than a cold water pipe, but a ground rod is better still. Sometimes good results can be obtained by just using a good antenna, and a lot will depend on your location.

Let's say you want to tune for an A.M. station. Turn the volume control on-off switch, R6-S1, to about its mid-position. Advance the regeneration control so that it just starts to squeal. As you tune with the
main tuning control, you will notice that as you pass over a station the squeal will drop in pitch. Tune to the point of lowest pitch, now reduce the regeneration control, R2, just below the point where the squealing stops. You have now tuned in a station.

If you hear another station on top of the one you want to hear, use the vernier tuning control. If this doesn't help, reduce the capacity of the antenna trimmer C1 by turning
it slightly counter-clockwise. The antenna trimmer should normally be set for best sensitivity over the entire tuning range. To receive a continuous wave (CW) station, set the regeneration control just past the point where the squeal starts.

Modifications. Earlier we mentioned the DXer could be modified to cover any band from 500 kilocycles to 30 megacycles: here's
(Continued on page 111)

PARTS LIST FOR NEOPHYTE'S DX'ER

B1-9-valt battery (Burgess 2 U 6 or equiv.)
BP1, BP2-Red and black binding posts
Cl-9-180-pf. mica compression trimmer capacitor (Lafayette 34G6831) or equiv.
C2-10-365-pf. variable capocitor (Lafoyette 32G11031 or equiv.
C3-2.8-17.5-pf. variable capacitor (Hammerlund HF-15) or equiv.
C4-. 01 mfd . ceramic capacitor
C5,9-. 001 mfd . ceramic capocitor
C6-4 mfd. miniature electrolytic capacitor 6 WVDC
C7, $10-50 \mathrm{mfd}$. miniature electrolytic capacitor 6 MVDC
C8, 11 - 5 mfd. miniafure electrolytic capacitor 6 MVDC
11 - $1 / 4$-inch phone jack
LI-25 turns No. 26 wire close wound, on a $3 / 8$-inch diameter, $11 / 8$-inch plastic coil form (Lafoyette Radio 34G8913) Tapped 10 turns from gnd. (See text)
L2-10 furns of No. 26 wire close wound over LI (See text)
Q1—Pnp rf Iransistor (Lafoyette 19G4211 or equiv.)
Q2, 3-Pnp germanium oudio fransistor (Lafoyefte 19G2701 or equiv.)
R1- $4,700,000$-ohm $1 / 2$-watt resistor (see lext)
R2-50,000-ohm miniature potentiometer (Lafayeffe 32 G73591 or equiv.
R3, $7-68,000$-ohm, $1 / 2$-wati resistors
R4-10,000-ohm $1 / 2$-watt resistor
R5-1,200-ohm, $1 / 2$-watt resistor

R6-5,000-ohm miniature patentiometer with on-off switch (Lafayefte 32G7363)
R8-27,000-ohm, $1 / 2$-watt resistor
R9-470-ohm, $1 / 2$-watt resisior
S1-S.p.s.t. switch (see R6)
II-Audio transformer, 10,000-ohm primary; 2,000-ahm secondary (Lafayette 19G6126 or equiv.)
1 —6 $1 / 4^{\prime \prime} \times 33 / 4 " \times 2^{\prime \prime}$ plastic case and cover panel ILafayette 19G2001 and 19G3701, respectively)
2-Tuning knobs, $3 / 4$-inch diam., $1 / 6$-inch shoft Burstein Applebee 12 A8491
2-Tuning knobs, $11 / 4$-inch diam., $1 / 4$-inch shoft (Burstein Applebee 12B60)
Misc.-Nuts, bolts, hook-up wire, fransistor sockets, battery clip, rubber scoop, perforated circuit board, solder, etc.

Estimated cost: \$14.00
Estimoted construction time: 8 hours

As shown in the schematic diagram, coil L1 is coupled to antenna coil L2, with R2 con-

Advance simulators teach our future merchant captains the secrets of radar, RDF, gyroscopic compasses, and nuclear automation that ride the waves in our futuristic vessels

The RDF loop antenna, upper left, is easily recognized by an RTVE'er but you'll have to take a closer look to see that the computerized console at left contains conventional engine room telegraph. Instrument bank, above, simulates that of atomic power plant.

- The U. S. Merchant Marine Academy, established in 1938, and maintained by the U. S. Department of Commerce under the direction of the Maritime Administration, is a relative newcomer in the ranks of naval training colleges, such as the U. S. Naval Academy (Annapolis) and the marine academies of nations.

This relative newness has freed the Merchant Marine Academy at King's Point, Long Island, from some of the more restrictive old traditions that harken back to the days of sail. The training program at King's Point is dynamically forward looking. On its extensive campus on Long Island's North Shore, the acadeny has classrooms, workshops, laboratories, and simulated vessels, all of which reflect the most advanced trends in modern technology.

The electronics lab contains the latest aids
to navigation; there are no less than four marine refrigeration units; and the nuclear lab has a sub-critical nuclear reactor permitting the performance of all basic experiments ship's officers of the future must know now.

The pride of the Academy is the NS Savannah simulator-computer facility where the controls of the first nuclear powered merchantman of the U.S. fleet are faithfully reproduced in such a manner that every conceivable reaction and operation may be performed by the cadets as if they were on the Savannah herself.

It is in this environment of total training that the future merchant captains of America's merchant marine are being prepared to command our most modern vessels. And they will also be prepared to step onto the deck of the nuclear, highly automated vessels still on the drawing boards.

Vessel's course is plotted on radar screen at left; operation of radar scan antenna is explained above; and gyroscopic compass, below, points precision finger at true north.

FOREIGN TUBE REPLACEMENT GUIDE

How many times have you been faced with the problem of replacing an obviously defective QA2408 vacuum tube in a European "von Schlock Super XB8" receiver not knowing that an ordinary 6SN7GTB will do the job? Don't fret! You will not be the last service technician or "do-it-yourselfer" who held up a simple repair job while waiting for a mail order package to arrive, when the exact or near exact replacement vacuum tube was in your tube caddy or resting in another receiver that was not in use. The
interchangeability replacement guide for foreign tubes is given below to take care of such problems. The replacement types listed will give satisfactory performance in almost every case when used in home entertainment equipment. However, due to very unusual circuit design or a critical application, some replacement tubes may not give proper or usable operation.

In some very rare cases, damage to the circuit may occur. To avoid this, observe
(Continued on page 111)

Foreign	Replacement	Foreign	Replacement	Foreign	Replacement	Foreign	Replacement		
$\begin{aligned} & 836 \\ & 865 \\ & 8152 \\ & 8309 \\ & 8329 \end{aligned}$	I2SN7GTA 6SN7GTB 12AT7 12AT7 $12 A U 7$	$\begin{aligned} & \text { ECC32 } \\ & \text { ECC } 33 \\ & \text { ECC } 35 \\ & \text { ECC } 82 \end{aligned}$	6SN7GTB* 6SN7GTB* 6SL7GT* 12AT7 12AU7	HABC80 HBC90 H8C9I HCC85 HD5I	$\begin{aligned} & 1978 \\ & 12 A T 6 \\ & 12 A V 6 \\ & 17 E W 8 \\ & \text { OA2 } \end{aligned}$	$\begin{aligned} & \text { QSI208 } \\ & \text { QVO3/12 } \\ & \text { QV06/20 } \\ & \text { R19 } \\ & \text { REI } \end{aligned}$	$\begin{aligned} & 082 \\ & 5763 \\ & 6146,6146 \mathrm{~A} \\ & 1 \times 28 \\ & 5 Y 3 G T \end{aligned}$		
B339 8719 BPMO4 D2M9 D63	$\begin{aligned} & 12 A X 7.7025 \\ & 6 A Q 8 \\ & 6 A Q 5 A \\ & 6 A L 5 \\ & 6 H^{6} \end{aligned}$	$\begin{aligned} & \text { ECC83 } \\ & \text { ECC85 } \\ & \text { ECC86 } \\ & \text { ECC88 } \end{aligned}$	$\begin{aligned} & \text { 12AX7. } 7025 \\ & \text { 6AQ8 } \\ & \text { 6GM8 } \\ & 60 \mathrm{G} 8 \\ & 6 \mathrm{~J} 6 A \end{aligned}$	HD52 HF93 HF94 HK90 HL92	082 12BA6 12AU6 128E6 50 C 5	5856 5860 T2M05 U41 U50	$\begin{aligned} & 0 A 2 \\ & 0 B 2 \\ & 6 J 6 A \\ & 183 . G T \\ & 5 Y 3 G T \end{aligned}$		
D77 D152 DAF91 DAF92 DD6	6 AL5 6AL5 IS5 IU5 6 AL5	$\begin{aligned} & \text { ECCI80 } \\ & \text { ECC189 } \\ & \text { ECC801S } \\ & \text { ECC900 } \\ & \text { ECF80 } \end{aligned}$	$\begin{aligned} & \text { 6BO7A } \\ & \text { 6ES8 } \\ & 6201 \\ & \text { 6HA5,6HM5 } \\ & 68 \mathrm{LB} \end{aligned}$	HMO4 HY90 KD2I KD24 KD25	6BE6 35W4 OA3 OC3 0D3	U52 U70 U78 U147 U149	5U4GB $6 \times 5 \mathrm{GT}$ 6×4 $6 \times 5 \mathrm{GT}$ $7 Y 4$		
$\begin{aligned} & \text { DF62 } \\ & \text { DF91 } \\ & \text { DF92 } \\ & \text { DF904 } \\ & \text { DH77 } \end{aligned}$	$\begin{aligned} & \text { IAD4 } \\ & \text { IT4 } \\ & \text { IL4 } \\ & \text { IU4 } \\ & 6 A T 6 \end{aligned}$	ECF82 ECF86 ECL82 ECL84 ECL86	608 6HG8 6 M 8 6D×8 6GW8	KT32 KT63 KT66 KT7I KT88	$\begin{aligned} & 25 L 6 G T \\ & 6 F 6 G T \\ & 6 L 6 G \mathrm{G} \\ & 50 \mathrm{~L} G \mathrm{GT} \\ & 6550 \end{aligned}$	U709 UL84 UU12 V2M70 WI7	$\begin{aligned} & 6 C A 4 \\ & 4585 \\ & 6 C A 4 \\ & 6 \times 4 \\ & 174 \end{aligned}$		
DH149 DH719 DK32 DK91 DL33	$\begin{aligned} & \text { 7C6 } \\ & \text { 6T8A } \\ & \text { IA7GT } \\ & \text { 1R5 } \\ & \text { 3Q5GT } \end{aligned}$	ED2 EF22 EF36 EF37A EF39	$\begin{aligned} & 6 \mathrm{AL5} \\ & 77^{*} \\ & 67^{\circ} \\ & 1620^{\circ} \\ & 6 \mathrm{~K} 7^{*} \end{aligned}$	$\begin{aligned} & \text { KTZ63 } \\ & \text { L63 } \\ & \text { L77 } \\ & \text { M8079 } \\ & \text { M8080 } \end{aligned}$	617 615 6 C 4 5726 6100	W63 W76 W143 W147 W149	$\begin{aligned} & 6 \mathrm{K7} \\ & 12 \mathrm{K7GT} \\ & 787^{*} \\ & 6 \mathrm{K7} \\ & 787 \end{aligned}$		
DL91 DL92 DL94 DL95 DP61	$\begin{aligned} & 154 \\ & 3 S 4 \\ & 3 V 4 \\ & 304 \\ & 6 A K 5 \end{aligned}$	EF72 EF93 EF94 EF95 EF96	$\begin{aligned} & 5840 \\ & 6 B A 6 \\ & 6 A U 6 A \\ & 6 A K 5 \\ & 6 A G 5 \end{aligned}$	M808I M8100 M8136 M8162 M8196	6.56 5654 6189 6201 5725	$\begin{aligned} & \text { W727 } \\ & \text { WT294 } \\ & \text { X14 } \\ & \text { X17 } \\ & \text { X63 } \end{aligned}$	6BA6 0D3 IA7GT IR5 6 A8		
DY30 DY80 DY86 DY87 E8ICC	$\begin{aligned} & 183 \mathrm{GT} \\ & 1 \times 2 \mathrm{~A} / \mathrm{B} \\ & 152 \mathrm{~A}, 1 \mathrm{H} 2 \\ & 152 \mathrm{~A}, 1 \mathrm{H} 2 \\ & 6201 \end{aligned}$	EF183 EF184 EF731 EF732 EH 90	6EH7 6EJ7 5899 5840 6 CS6	$\begin{aligned} & \text { M8204 } \\ & \text { M8212 } \\ & \text { N15 } \\ & \text { N16 } \\ & \text { N17 } \end{aligned}$	$\begin{aligned} & 5727 \\ & 5726 \\ & 305 \mathrm{GT} \\ & 395 \mathrm{GT} \\ & 354 \end{aligned}$	$\times 65$ $\times 66$ $\times 77$ $\times 727$ $\mathrm{xC97}$	$6 K 8$ 6 K8 6BE6 6BE6 2FY5		
$\begin{aligned} & \text { E88CC } \\ & \text { E90F } \\ & \text { E91AA } \\ & \text { E91H } \\ & \text { E91N } \end{aligned}$	6922 6661 5726 5915A 5727	$\begin{aligned} & \text { EH900S } \\ & \text { EK90 } \\ & \text { EL34 } \\ & \text { EL35 } \\ & \text { EL37 } \end{aligned}$	$\begin{aligned} & 5915 A \\ & 6 B E 6 \\ & 6 \mathrm{CA} \\ & 6 \mathrm{Y} 6 \mathrm{GT} \\ & 6 \mathrm{~L} 6 \mathrm{GC} \end{aligned}$	N18 N19 N709 N727 OBC3	$\begin{aligned} & 304 \\ & 3 V 4 \\ & 6805 \\ & 6 A Q 5 \\ & 12507 \end{aligned}$	$\begin{aligned} & \text { XCC82 } \\ & \text { XCC189 } \\ & \text { XCF80 } \\ & \text { XFI83 } \\ & \text { XF184 } \end{aligned}$	7AU7 4ES8 48 L 8 3 EH 7 3EJ7		
E\%F E99F El80F E182CC EAA91	5654 6662 6688* 7044* 6AL5	EL84 EL86 EL90 ELI80 EM81	$\begin{aligned} & 68 Q 5 \\ & 6 C W 5 \\ & 6 A Q 5 A \\ & \text { 12BY7A, 128V7 } \\ & \text { 6DAS } \end{aligned}$	OM6 PCF80 PCF82 PCF86 PCL82	$\begin{aligned} & 6 K 7{ }^{6} \\ & 9 A 8 \\ & 948 A \\ & 7 H G 8 \\ & 16 A 8 \end{aligned}$	XFRI XL84 XY88 YF183 YF184	$\begin{aligned} & \text { 1AD4 } \\ & 8 B Q 5 \\ & 16 A{ }^{2} 3 \\ & 4 E H 7 \\ & 4 E J 7 \end{aligned}$		
$\begin{aligned} & \text { EAA901S } \\ & \text { EABC80 } \\ & \text { EB34 } \\ & \text { EB91 } \\ & \text { EBC90 } \end{aligned}$	$\begin{aligned} & 5726 \\ & \text { 6T8A } \\ & \text { 6H6 } \\ & \text { 6AL5* } \\ & \text { 6AT6 } \end{aligned}$	EM84 EN91 EN92 EN93 EY81	$\begin{aligned} & \text { 6FG6 } \\ & \text { 2D21,5727 } \\ & 5696 A \\ & 6 D 4 \\ & 6 A F 3^{*} \end{aligned}$	$\begin{aligned} & \text { PCL84 } \\ & \text { PF9 } \\ & \text { PH4 } \\ & \text { PL2I } \\ & \text { PL84 } \end{aligned}$	$\begin{aligned} & 15 D 08 \\ & 6 K 7 \\ & 6 A 8 \\ & 2 D 21,5727 \\ & 15 C W 5 \end{aligned}$	$\begin{aligned} & \text { Z63 } \\ & \text { Z300T } \\ & \text { Z900T } \\ & \text { ZDI7 } \\ & \text { ICI } \end{aligned}$	$\begin{aligned} & 6.17 \\ & 0 A 4 G \\ & 5823 \\ & \text { IS5 } \\ & \text { IR5 } \end{aligned}$		
$\begin{aligned} & \text { E8C91 } \\ & \text { EBF32 } \\ & \text { EBF89 } \\ & \text { EC71 } \end{aligned}$	6AV6 688* 6DC8 5718 6 C 4	EY88 EZ35 EZ80 EZ81 EZ90	$\begin{aligned} & 6 A L 3 \\ & 6 \times 5 G T \\ & 6 V 4 \\ & 6 C A 4 \\ & 6 \times 4 \end{aligned}$	$\begin{aligned} & \text { PL500 } \\ & \text { PM04 } \\ & \text { PM05 } \\ & \text { QA2404 } \\ & \text { QA2406 } \end{aligned}$	$\begin{aligned} & \text { 27GB5 } \\ & \text { 6BA6 } \\ & 6 A K 5 \\ & 5726 \\ & 6201 \end{aligned}$	IF3 IFD9 IPIO \|P		6 D2	IT4 IS5 354 $3 \vee 4$ 6 AL5
$\begin{aligned} & \text { EC92 } \\ & \text { EC93 } \\ & \text { EC94 } \\ & \text { EC95 } \\ & \text { EC97 } \end{aligned}$	6AB4 6 AF4 6AF4 6ERS 6 FYS	$\begin{aligned} & \text { GZ32 } \\ & \text { GZ34 } \\ & \text { H52 } \\ & \text { H63 } \\ & \text { HAA91 } \end{aligned}$	5AR4 5AR4 5U4GB 6 F5 12AL5	$\begin{aligned} & \text { QA2407 } \\ & \text { QA2408 } \\ & \text { QEO6/50 } \\ & \text { QQV03/10 } \\ & \text { QS1207 } \end{aligned}$	$\begin{aligned} & 6202 \\ & 6 S N 7 G T B \\ & 807 \\ & 6360 \\ & 0 \text { A2 } \end{aligned}$	6 LI 2 6 L 13 6 615 6 V 4 52 KU	$\begin{aligned} & \text { 6AO8 } \\ & 12 A \times 7 A, 7025 \\ & 6 B Q 5 \\ & 6 C A 4 \\ & 5 V 4 G A \end{aligned}$		

TMIE OSCILOBRATOR

The Oscillobrator is of interest mainly to people who have oscilloscopes, or to people who hope to buy one but whose budget will allow only the economy model . . . or to experimenters who don't even own a scope but simply can't resist a construction project.

Those in all three categories are probably aware that without a voltage calibrator an oscilloscope functions strictly as an observational device. With one, the oscilloscope becomes a highly sophisticated voltage measuring instrument.

The shortcomings of the ordinary voltmeter are readily apparent. It performs very successfully on D.C. voltages, or on 60-cycle sine waves. But it is useless at audio or radio frequencies, or on square waves, or on pulsating $D C$, in fact, on any non-sinusoidal waveform. It is in these applications that calibrated oscilloscope really earns its keep.

A Bargain Project. The careful shopper can buy all new parts for the Oscillobrator for less than ten dollars. Voltage calibrator kits now on the market cost anywhere from
half again to twice as much. Not only has this circuit sacrificed nothing to achieve economy, but it can actually boast of features not found in its commercial counterparts.

For instance, it requires no warmup time. Flip on the switch when you are ready to take the measurement and flip it off when you are through. There is no standby current consumption, nor any overheating and ventilation problem. If you are so inclined, you can substitute a spring-loaded momentary contact switch for SI so that it will turn itself off when released.

Another highly desirable characteristic is that constant zeroing or recalibration is not required. After you make the initial adjustment you need give it no further attention unless you change the voltage regulator tube or some other component.

Perhaps the outstanding feature is the convenience and availability that can be built into the instrument. It is designed to plug directly into the vertical input terminals of the oscilloscope. The test leads can be plugged into the Oscillobrator and left there

To calibrate your oscilloscope to indicate voltage just take a dash of a few dollars to home-brew this circuit

By William J. Millard
permanently because, in the off position, switch Sl provides a direct path between the input and the output terminals. For all of these reasons, the Oscillobrator easily earns the descriptive term of Instant Byslander.

How It Works. Voltage regulator tube V1 is the heart of the calibrator. It fires when the pulse from the rectifier reaches 115 volts and immediately draws enough current through resistor RI to reduce the voltage and hold it at a steady 105 volts. When the amplitude of the positive pulse drops below that point, the regulator tube cuts off. The resultant waveform, as it appears on the oscilloscope, is shown in the drawing. The peak at the left side represents the initial surge to 115 volts that fires the regulator tube. The horizontal bars at the top and bottom represent a voltage differential of 105 volts.

When the oscilloscope sweep frequency is higher than 60 cycles, which is normally the case, the calibrator output appears as a set of parallel bars. The vertical components of the waveform occur so rapidly that they practically disappear, leaving the two horizontal bars representing the calibrating voltage. Normal line-voltage variations have a negligible effect on the VR tube output, thus providing an excellent comparison standard.

Voltage Divider Network. The calibration voltage is controlled by potentiometer R3 and the divider network consisting of

All components except the input and output jacks and plugs are mounted on subchassis.

Plugs P1 and P2 are placed at a level to meet vertical input terminals of the scope.
resistors R4, R5, and R6. The use of a wirewound potentiometer for R 3 is an absolute must. The linearity of a carbon potentiometer, even with the so-called linear taper, is too poor for reasonably accurate calibration. Resistors R4, R5, and R6 should be low-tolerance resistors, 5% or less. If you have a good supply of resistors in your junk box and an accurate ohmmeter of adequate range, you can build up a divider to

PARTS LIST
Cl-. 01 -mf., 600-volt ceramic copocitor
DI-Silicon rectifier, 400PIV, 750 ma (GE IN539, Lofoyette Rodio 19G5001 or equiv.)
JI, J2-Red and block bonona jocks
MI-AC voltmeter (for colibrotion only)
PI, P2-Red ond block plugs to match oscilloscope input jocks
RI-4700-ohm, 2-woff, 10\% resistor
R2-5,000- to 50,000 -ohm, $1 / 2$-wott, lineor toper potentiometer
R3-20,000-ohm, $1 / 2$-woff, linear foper wirewound patentiometer
R4-470,000-ohm, $1 / 2$-watt, 5% resistor
R5-47,000-ohm, $1 / 2$-watt, 5% resistor
R6-5100-ohm, $1 / 2$-watt, 5\% resistor
R7-Low resistonce potentiometer (for colibrotion only)
51-D.p.d.t. toggle switch
S2-Single gang, 3-position rotory switch
TI-Power tronsformer, 125 vdc @ 15 mol (Allied Electronics 6IG410 or Lofoyette 33G3405)
VI-OB2 valtoge regulotor tube
$1-4^{\prime \prime} \times 5^{\prime \prime} \times 3^{\prime \prime}$ utility cabinet (Bud C-1794 or equiv.)
Misc.-7-pin miniofure socket, solder lugs, terminol strip, line cord ond plug, diol and switch plotes, indicotor knobs, ponel markings, hardware, wire, solder, efc.

Estimoted cost \$7.00
Estimated construction time: 6 hours
even closer tolerance-it's all up to you.
Construction Hints. The configuration of the control panel of your oscilloscope determines to a large extent the physical layout and the type of cabinet you choose for your version of the Oscillobrator. If you wish to plug directly into your scope, you'll want to use as small a cabinet as possible. Be sure to locate plugs P1 and P2 so that the calibrator doesn't cover the oscilloscope controls. Switch S1 and the input and output terminals JI-J2 and P1-P2, respectively, should be in a direct line and isolated as much as possible to avoid losses and interaction with the calibrator circuits.

Note that calibrating potentiometer R2 is mounted on the subpanel with screwdriver access through a hole drilled in the side of the cabinet. R2 can be a surplus potentiometer from your junkbox and can range from 5 K to 50 K ohms resistance. If it has no slot, cut one in the shaft with a hacksaw. Once it has been adjusted it requires no further attention and the inside mounting prevents accidental misalignment.

Potentiometer dial plates with $0-100 \mathrm{di}$ visions are available from most parts supply houses. The ideal method for the most precise among us would be to make your own dial so as to conform to the potentiometer being used, because even the wirewound variety is not perfectly linear. However, some non-linearity ordinarily poses no problem for most applications. Besides, the dial plate is dressier and costs about a quarter.

Once the front panel with the subchassis is attached to the cabinet, quarters are a

Single V1 pulse at leff; but resulting two bars at right represent calibrating voltage.
little too close for easy access. Therefore, after the chassis wiring is complete, prepare two lengths of shielded wire slightly longer than necessary to reach from $S 1$ to the input jacks and output plugs. Solder them to the appropriate lugs on SI. Then with the front panel partially in place but still with enough space to work in, solder the loose ends of the shielded wire to the input and output connectors on the cabinet. Both the input and the output positive terminals, JI and P1, respectively, must be insulated from the cabinet. The negative terminals, J2 and P2, may be mounted directly.

Calibration. Calibration is simple. You will need an AC voltmeter, a source of alternating current, and another potentiometer. You can use another transformer to hook up the calibration circuit shown in the schematic diagram, or, which is more convenient, run a couple of leads from the unused 6.3 -volt winding of transformer T1 to potentiometer R7. Leave the voltmeter M1 connected during the calibration process so as to prevent any fluctuation caused by the loading imposed on the circuit by the
(Continued on page 80)

Schematic diagram of the Oscillobrator shows the OFF position feature of passing the signal directly to the oscilloscope. Note the advantageous use of 6.3 vac II leads, otherwise unused, for a calibration source (see table).

VOLTAGE COMPARISON

RMS	Peak-to-Peak
.354	1
.707	2
1.07	3
1.41	4
1.77	5
2.12	6
2.47	7
2.83	8
3.18	9
3.54	10
7.07	20
11.61	30
14.14	40
17.67	50
21.21	60
24.75	70
28.28	80
31.82	90
35.35	100

Switches from

By Roy L. Clough, Jr.

SINGLE POLE SWITCH

MOMENTARY CONTACT SWITCH

When you're working on experimental setups, particularly simple computers and logic circuits, you'll frequently need special switching arrangements that aren't easy to come by.

Next time you run into a switch snag, try rolling your own; it's often quicker and easier than modifying a switch you have. And by designing your own, you can always add contacts or revise the layout. All you need are some eyelets and some scrap cardboard.

Switches perform one or more of three functions: they open or close one or several circuits and remain in position until operated again; they open or close one or several circuits and

Eyelets \& Cardboard If you'd rather switch than fight through pages of a parts catalog, read on!

immediately return to their normal state when released; and they reverse or redistribute the flow of current. Your home-brew switches can do all these things.

Plan your switch before you start. Four simple types are shown here, and from these basic patterns you can develop just about any type you need. You can add or delete contacts as required; pivots can be made from two eyelets, or with one eyelet and a thin washer; and pigtail leads can be crimped in or soldered to the backs of the contacts. Use a tough, springy grade of cardboard and make a switch for the best.

BASIC REVERSING SWITCH

- How would you like to dramatize your photo album with snapshots of your favorite Met baseball player at bat-pictures you made yourself from a hox seat behind first base, home plate or the outfield. You can do it without leaving your home by recording on film the images on your television screen. And you can get good pictures because "live" television photographs best.

Television innages are recorded nost easily and most satisfactorily with an adjustable still camera mounted on a tripod-the tripod is a must for good pictures, and it's a good idea to use a shutter release cable. Place the camera and tripod as close as possible to the television screen, preferably at a distance where the TV scieen just fills the viewfinder. You should use a tape measure to accurately measure the distance from the front of the TV screen to. the film plane
(back) of your camera. Make sure that the camera's taking lens is lined up with the center of the television screen-both horizontally and vertically. Set the camera's focusing scale for the exact distance you have measured.

The television image will photograph best if it is adjusted so that it has a slightly softer, or lower-than-normal, contrast. Never use flash and turn out all room light-the light from the screen itself will be adequate if you follow these directions. During the day close curtains and drapes to reduce flares and reflections.

You may find the distance is too short for the focusing range of your camera. If it is, use a lens portrait attachment to avoid having to move the camera further back, resulting in a smaller image on your film. (Contimued on page 111)

BUILD HER FOR DINNER

By C. M. Stanbury

Robots are fun, especially when friends build one for you!

I'all began innocently enough at a coffee break in the employees cafeteria at Experimental Electronics Inc. George Fenner, the wild eyed mail boy was describing to a couple of the firm's experimental engineers the kick he got out of watching Rhoda, the gorgeous robot on the TV show, My Living Doll.
"I'd sure like to take out a girl like that," he had remarked. The older men looked at George rather paternally and a voice spoke up.
"We could build you one." It was Frank Tucker the firm's experimental genius who had first offered and his assistant Will James had chimed right in with, "Would you like a blonde or a redhead?"

After that it became a daily joke and the two engineers would make quite a big deal out of it each day, reporting their progress to George. George took it all in his stride and just went along with the two men good naturedly, but there were times when he would listen to their progress reports and wonder if it were possible that the two men
were actually thinking seriously about the project. Almost anjthing could happen around Experimental Electronics Inc.-and it usually did. The firm had done some government work on robots, but as far as George knew there was nothing current being done in that department-or was there?

It was when the two engineers started asking George for the measurements he preferred that he began to feel that the men were possibly getting serious, and so he picked the statistics 38-24-36. Just a week later they approached him with books on facial structure and asked him to pick out a chin and a nose and a set of eyes. Now he knew that the two men were building up to something big. When they brought in a kit and had him choose skin textures he was baffled. Finally his curiosity was getting beyond control and he pleaded with the men that he be allowed to see the project-but they refused.
"We won't let you see her till we're done," Frank Tucker explained, "then you'll be all
the more impressed with the finished product."

This waiting went on for a full six months and by then George had filled in every single detail of the girl's requirements from her toe nails to the tip of her nose. It became evident from the questions that Frank and Will were nearing the end of their project. Finally, one morning as George sipped his coffee the two men rose and taking George solemnly by the shoulders they announced, "She's nearly ready, George. We'll have her ready for you Friday night."

George was quite a happy fellow that week waiting for whatever surprise the two men had worked up for him. He had decided months before that the two men had

been carrying on a good natured hoax and since then he had tried his best to convince them that he believed. Then when Friday evening arrived, true to their word, the men took George into their lab and lifting the lid of a long storage case they revealed the perfect specimen that George had ordered. She was a true Goddess with beauty that cannot be described with mere words. She smiled a most loving smile at George and he stood mute dazed by her stunning beauty. Her beauty so overwhelmed him that he found it difficult to listen to the operating instructions that Frank and Will were giving him.
"The button on the back shuts her off." Will explained and George placed his hand on her lovely back and sure enough there was a button.
"When her bell rings you push her battery reset button." Frank said and just then a bell sounded and Frank took the girl's wrist and pushed a button.
"Listen to her hum," Will said and they took turns listening at her neck to the quiet hum of her perfectly performing components.

George scanned the product and smiled, "Yes sir, 38-24-36, just like I ordered. Now what should I do with her?" he asked, "I've got no money, no car."

Frank grinned and took out his wallet, "Here's twenty bucks kid, take her out, feed her, and dance her around."
"And take my car," Will said, handing George the keys.
"But how do I make her move?" George asked eagerly.
"Order her," Frank explained.
"Well all right," George said and looking at both men bug eyed, he took in a deep breath, looked straight at the girl and in a firm voice ordered, "Come with me, robot."

Together they went out of the office, arm in arm, and walked out to the parking lot. Together they climbed into Will's sleek roadster and spinning the wheels they roared down the highway.

George turned to the lovely creature beside him and taking another deep breath he ordered, "Now take that silly button off your back, that battery operated humming motor off your neck, that silly switch and bell off your wrist, and relax baby. We've got twenty bucks to spend tonight and we are going to have a ball . . . that's B A L L."

She smiled her most loving smile and after removing the props she snuggled closer to George saying, "Whatever you say, Master."

Now You Can Beat It With a Hose

- A one-inch length of automobile windshield wiper hose can be used as a quick, inexpensive $1 / 4^{\prime \prime}$-to $-1 / 4^{\prime \prime}$ shaft coupler for radio and other electronic gadgets. While not intended to replace conventional couplers which employ set screws, the hose does grip the shafts with surprising tenacity, making it handy in an emergency or in experimental
breadboards. A 3- to 4-inch length of hose makes a good flexible coupler for connecting the shaft of a variable component to a knob shaft when the two shafts are out of line up to 45 degrees from each other-backlash is practically nil.

Other uses for the hose include couplers for small electric motors, Veeder-Root coun-ters-in fact, anywhere $1 / 4$-inch shafts are used, and the load requirements are mod-erate.-Frank H. Tooker

UTC/GOODMANS MAXIMUS 1

Miniature High Fidelity
Bookshelf Speaker System

The $71 / 4 \times 101 / 2 \times 51 / 2$-inch UTC/Goodmans Maximus 1 hi-fi speaker system comprises a 1900 cycle cross-over network, a tweeter, and a 4 -inch woofer. And the question immediately comes to mind: "How in heck can you get any bass from a 4 -inch speaker?" This reaction is more than justified since history of miniature "bookshelf" speakers is strewn with honest disasters and outright attempts to make a fast buck. And no one ever had the audacity to claim high fidelity from a 4 -inch woofer.

But it's that 4 -inch woofer which is the big difference between the Maximus 1 and other crude attempts at high-fidelity midget speakers.

Big Push. Good low frequency response requires the movement of large amounts of air; and the usual way to move air is to have a large cone with a small motion, or "push." A small cone with a really big push
could also accomplish the same effect, but trying for a large push usually means driving the speaker's voice coil into a non linear magnetic field-the result is distortion. (And this assumes the speaker cone compliance would allow a large motion which a small cone usually doesn't permit.)

But a big push is exactly what the Maximus delivers. The cone, as we are familiar with them, hardly exists at all. There is only a small stiff-cone area; the rest is a very flexible rubber surround. Place your fingertips very lightly against the cone and it moves a good half inch. In addition, the magnet, in comparison to the rest of the speaker-cone plus frame-is tremendous. This allows the voice coil to move in a linear field even under high power levels, without distortion.

In other words, the 4 -inch woofer has the capacity to handle large amounts of low

Look closely, that's a speaker between the books on the lower shelf! But you won't find the quality of the sound of the Maximus 1 as unobirusive as its enclosure. For if will swell through the room, just as complete in its bass response, as speaker systems iwice its size. The Maximus 1 will put an end to your idea of good sound depending on the greatest number of cubic feet in an enclosure.

Research into diaphragm behavior and electromagnetic control characteristics resulted in the patented Cushioned Air Pneumatic Suspension (CAPS) principle that made a 4 -inch diameter high fidelity woofer a reality. With the easily replaceable grille cloth removed, the woofer cone's rubber surround is visible.

That hunk of iron on the woofer is all magnet. Its size is compared to a standard 4-inch replacement speaker held at the leff. Note heavy padding and divided cabinet; and that's putty on front for an air tight seal.
frequency energy and it's the capacity that's the key to the Maximus 1.

- Listening Test. Since the Maximus 1 is designed and touted as a "bookshelf" speaker system we felt is should be tested against another "bookshelf" speaker. Unfortunately, there just isn't another hi-fi "bookshelf" speaker that will really fit on a bookshelf. So for our reference speaker we chose a good quality 8 -inch speaker in a rather large cabinet (this one is also called a "bookshelf" model though we doubt there is a shelf it could fit on).

With the amplifier's tone controls set to "flat" the reference speaker delivered unmistakable high fidelity sound while the Maximus 1 was definitely lacking in low frequency response from the upper bass range down. However, when we adjusted the tone control for some 10 db of bass boost the Maximus l's low frequency response was a twin brother to the reference
speaker. (With the Maximus 1 placed in a corner at the junction of the two walls it required only 5 db boost to equal the wall mounted reference speaker.)

Of course, if one tried to pump 10 db bass boost into a 4 -inch replacement type speaker it would literally destroy the speaker. But the Maximus has the capacity to handle the extra power, and it does so with low distortion. As we said, it was a twin to the much larger speaker system.

Now don't assume there is anything wrong with using bass boost to compensate for the speaker. Fact is, the latest thinking is to specifically tailor the amplifier response to match speaker deficiencies-thereby attaining optimum "speaker response." So using bass boost with miniature speakers is no longer anything special-as long as the 'speaker has the capacity to handle the power needed for good low frequency performance.

Going back to our A-B test, the overall sound quality of the Maximus I was very close to the reference speaker-very clean well balanced sound with a slight touch of brightness.

All in all, where space or decor requirements call for miniature speakers, we feel Maximus 1 is the only model (so far) which can deliver hi-fi performance. While it cannot compete with a 12 -inch system, the Maximus I delivers a surprisingly big sound from a very small cabinet. For further information, write to UTC Sound Division, Dept. 7RI, 809 Stewart Avenue, Garden City, New York.

[^0]
SHURE V-15

15-Degree
 Stereo Cartridge

TThe Shure V-15 stereo cartridge is described as having a bi-radial elliptical stylus with a 15 degree tracking angle. Unfortunately, unless one follows the advanced engineering articles this description sounds like gobbly-gook. So let's briefly review what the technical terminology means.

Back in the early days of recording-like last year-records were cut by a stylus positioned at right angles to the disc-true vertical. Today, to obtain better fidelity, most major record manufacturers position the cutting stylus approximately 15 degrees off true vertical. Therefore, to obtain maximum fidelity the playback stylus should be positioned as close as possible to 15 degree cutting angle, so the V-15 utilizes a 15 degree tracking angle.

Tips on Tips. As for the bi-radial elliptical stylus, it's just a fancy name for a stylus configuration that conforms to the record's grooves. As you know, the record master is cut with a flat faced stylus which vibrates

The V-15's frequency response and separation specifications match manufacturer's claims.

[^1]back-and-forth through an imaginary line running through the center of the disc. Without going into the "why?" of it, a conical; pickup stylus cannot faithfully maintain groove-wall contact in exactly the same man-i rer as the groove was cut-actually the problem gets most severe in the disc's inner grooves. (This is known as tracking or inner groove distortion.)

The V-15 stylus is mounted in a relatively large plastic block. To change the stylus you pull out the old and insert the new.

Another tracking difficulty is "pinch effect." Depending on the modulation the grooves widen and narrow, and a sharply pointed conical stylus rides up and down in the grooves-on stereo records undesired up and down motion causes second harmonic distortion.

Shure attempts to get around the two tracking problems by using a stylus which is more-or-less oval shaped rather than conical. The broad face of the pickup stylus is supposed to follow more closely the actual path of the flat faced cutting stylus. The stylus is also shaped to reduce up and down groove motion. This is the practical meaning of hi-radial elliptical.

Testing. A nice theory but how does it work out in practice. Do the advantages show up in measurements?-not really. The frequency response shown is about standard for high quality pickups. The big difference

LAB CHECK

is in the V-15's tracking force, and the resultant sound quality.

The V-15 is designed to track at forces between $3 / 4$ and $11 / 2$ grams. At $3 / 4$ gram the $\mathrm{V}-15$ requires the highest quality most precisely balanced arm, but any decent arm will do at $11 / 2$ grams (no record changers). The extra light pressure means extended record life and we were able to obtain 28 plays at $11 / 2$ grams before there was a discernable change in the record's sound quality.

Listening. What comes out of the loudspeaker is remarkable. Up through the upper midrange the V-15 delivered the sound expected of a quality pickup. The difference was in the highs-smooth as silk with not even a touch of stridency even at high modulation. From the brittle natural "edge" of the trum-
pets to the rivets vibrating in a cymbal, the overall V-15 quality was akin to the highest quality tape recordings. We seriously question whether one could tell the difference between tape playback and the V-15 sound in an A-B test.

The quality from mono discs cannot be described with words; it's as if the V-15 brings new life to old records.

An attractive feature is the user changeable stylus. Instead of having to handle a delicate fine wire, the user handles only a relatively large plastic block containing the stylus. One simply slides the stylus into place by pushing on the block. The stylus is re-tractable-that is, if the arm is dropped the stylus folds up, and does not dig into the record. A small soft plastic button mounted in the stylus support block protects the record from drop damage in that it prevents the pickup from digging into the record.

Our comments cannot faithfully describe the V-15; you must see it and hear it to believe it.

VIDEO IN THE GROOVE

The Videodise spinning above has more than sound in its grooves. It also stores video signals that are picked up by the stylus of a conventional record player and read out to a conventional television receiver. The unique part of the system, termed Phonovid, and developed by the Westinghouse Electric Corporation, is the link that joins record player to television receiver. The link is comprised of electronic circuits that make up what is known as a scan converter.
The scan converter uses a television scanning technique that resembles that used to obtain television pictures from the signals broadcast by weather satellites and space probes. Information from the Videodisc is stored in the scan converter's special electronic storage tubes, which build up and display a complete TV picture every 6 seconds.

One picture is read out repeatedly and displayed during the time that the next one is being formed from the video information in the grooves of the recording.

Phonovid system has great potential in the area of educational audio-visual aids. It could find application in classroom instruction, industrial and commercial training, vocational and military training, sales presentations, and remedial instruction, where repetition and opportunity for drill are essential. Any part of the recording can be held, skipped or repeated by manually lifting the tone arm. During interruption of the sound, the picture remains on the screen allowing discussion or emphasis of the topic. And it's no more complicated to operate than the high-fidelity phonograph rig you have at home.

Brunei and Bhutan are just two exotic places you can QSL

- Contrary to what you may have read elsewhere, short-wave listening does require something more than a receiver-it takes know-how. Most would-be SWL's find this out the hard way-by trial and plenty of errors. But if you keep on reading, we plan to unlock the seven gates to SWL prowess right here and now.

Broadcast \& Utility Stations. Putting it as simply as possible, transmissions from a broadcast station are intended for reception by the general public. Utility transmissions are for a specific individual(s). Utility stations include ships, coastal transmitters, aircraft, telephone, military and many others. SW broadcast stations, on the other hand, fall into just two categories-international broadcasts (Voice of America, Radio New York Worldwide, BBC, Radio Moscow, etc.) and those intended for regional coverage only. The latter are similar in purpose to those 50 -kilowatt clear channel jobs on the ordinary AM band.

Broadcasting. It is of course broadcast
stations which the general public hears most about but BC stations are assigned only about one tenth the SW frequencies. Most operate within those bands shown in the table. Meanwhile, except for some narrow Amateur bands (a completely separate hobby incidentally). all other SW frequencies are assigned to the Utilities. And yes, you may listen to utility stations. The only legal restriction is that you may not repeat the content of any such transmission but generally speaking nobody cares if you mention things like aeronautical weather reports, positions of aircraft or ships, and other items which are obviously of a non confidential nature. Probably the strictest enforcement applies to telephone conversations, many of which are sent via scrambled speech anyway.

Two regional SWBC bands, 90 and 60meters, are used for broadcasting only in the tropics. Elsewhere including the U. S., utility stations operate in this territory. Thus SWL's may tune for both types simultaneously, complete with mutual interference.

SECRETS OF SHORT-WAVE SUCCESS

By C. M. Stanbury II

When To Listen Where. Whether utility or broadcast, the same general reception conditions prevail. Upper frequencies are best during daylight hours with a peak around 2.00 PM (1400), but that's 2.00 PM at the midpoint between transmitter and receiver. Just how high the most useful frequency is depends upon the sunspot count and day to day variations.

Just the opposite is true at night when lower frequencies come into their own, especially in winter. Further, as most regional stations operate below 7 mc . (7000 kc .) and these usually represent rarer reception, the hours of darkness become very important.

A more detailed account of reception conditions becomes very complicated and therefore beyond the scope of this article. However we suggest you consult our Propagation Forecast in every issue of the Radio-TV Experimenter.

The SW Broadcast Bands. Although SWBC stations are vastly outnumbered by utilities, they will be the primary targets for most SWL's. BC stations require the least special knowledge to monitor and of course they do the most to encourage listenersannounce frequencies (sometimes), publish schedules and issue those all important DX'ers QSLs (which we'll discuss a little later). Therefore every rookie SWL must be prepared to cope with those narrow, crowded SWBC bands.

QRM means man-made interference and that is the story of the SWBC band. First, short-wave broadcast channels are only 5 kc . apart (as compared with 10 kc . on your standard AM band) and on an inexpensive receiver several channels may come in at once. It takes a strong signal to override this type of QRM. Next, some SW broadcast stations operate between channels thus creating a whistle or "heterodyne". For example, Radio Corporation at Santiago, Chile is on 9498 kc . (slightly outside the band) while Magadan, U.S.S.R. uses 9500 kc .-a difference in frequency of only 2 kc . As 1 kilocycle equals 1000 cycles per second, these two stations together produce an audio notes of 2000 c.p.s., which can be most annoying to the ear drums.

General Listening and DX. At this point you must decide what you want out of short wave. Whether you are primarily interested in the SWBC programs themselves, i.e., their content, or whether you want to perform technical feats, in other words, DX. For the general, non DX'ing short-wave listener,

SWBC stations have numerous attractionsthe most important of which are news, views of the world's governments and folk music of every hue.

DX'ers concentrate upon hearing as many countries as possible plus weak and otherwise difficult to receive transmitters. As DX'ers have to do little more than identify each station (but see the next section), many SW transmissions (because of weak signals and QRM are absolutely useless to general listeners) provide fine DX "loggings". On the other hand, every general listener should do a little DX'ing. In fact this is very important. Through DX'ing, an SWL's ear develops. Once you have that all important ear, stations which were previously nothing but so much noise, provide really worthwhile listening. All it takes is practice.

Reporting \& QSL's. Nearly every DXers collects QSLs. These are cards or letters sent out by the stations confirming your reception. A typical QSL is displayed at top of page. These represent tangible rewards for your DX prowess. To obtain each station's QSL you must send it a complete and correct reception report. Your report must contain time and date of reception (specify time zone used-GMT (EST plus 5 hours) is best for all large SWBC stations), frequency, a description of the program(s) heard to prove your reception (about 3 specific items are best), reception conditions and a run down

Short Wave Broadcast Bands

Kc.	Band (Mefers)	Notes
$3,200-3,400$	60	Tropics only
$3,900-4,000$	$49 \quad$ NOT in the Americos	
$4,750-5,060$	41	Tropics only
$5,950-6,200$	31	
$7,100-7,300$	$25 \quad$ NOT in the Americas	
$9,500-9,775$	19	
$11,700-11,975$	16	
$15,100-15,450$	90	
$17,700-17,900$	75	
$21,450-21,750$	13	
$25,600-26,100$	11	

Short-wave listening can begin right at home by DX'ing New York's international SW station WRUL (scene from WRUL's news room left, top). WRUL is an easy mark and responds with a colorful QSL card (left, bottom) that has spurred many an SWL'er to bigger and better DX's. At right is "Radio Clube de Mocambique" headquarters, a commercial SW broadcaster in Portuguese East Africa. Above is list of 5W bands (given in meters) and their frequencies.
on your own equipment can be helpful also.
Most SW stations can be addressed simply by station name, city and country. Most non government stations require return postage. The SWL can either purchase International Reply coupons (15 c each) at his local post office or purchased uncancelled foreign stamps (of the appropriate nationality) from a dealer.

Buying A Receiver. Now that you have a good idea what short wave is all about, you're ready to buy that first receiver. It's a good idea to start with a relatively inexpensive job, say less than $\$ 100$, then as your interest and know-how increase, move up a more expensive receiver in the "communications" class. If technically inclined, you can purchase your first rig in kit form and save a few dollars.

Assuming the SWL does plan to spend less than $\$ 100$, he will have to choose that rereceiver with the features he needs most. As those SWBC bands are so crowded, the prime requisite will be fine tuning which is accomplished by what's known as "bandspread", a second dial. With bandspread, the tuning procedure is as follows. Locate the desired band on the main dial then turn slowly across it on the bandspread.

After fine tuning, look for sensitivity (ability to pick up weak signals) and selectivity (ahility to separate stations on adjoining frequencies). If you purchase from those companies which are well known either in the

communications or kit fields, you'll get exactly what you pay for in these departments. Of course no receiver works well without an antenna, preferably the outdoor variety.

The one thing you should definitely not do is look for hi-fi features. Because of interference and constant flutuations in signal strength, short wave reception is simply not a hi-fi medium. So called hi-fi SW circuits merely decrease the receiver's selectivity.

Keep In Touch. The final thing you'll have to know is where to obtain information on SW stations, i.e. frequencies and schedules. Much of this data can be found in "White's Radio Log" a regular part of the Radio-TV Experimenter. But some stations change frequency every month and new stations are constantly appearing on the bands. Thus to really keep up with this fascinating world, you should join a short-wave listeners club. At present the three major organizations in North America covering SWBC stations are as follows:

- American SWL Club, 223 Potters Road, Buffalo, N. Y. 14220
- Newark News Radio Club, 215 Market Street, Newark, N. J.
- North American SW Association, 1503 Fifth Avenue A2, Altoona, Pa. 16002

Each issues a monthly news publication and each will send you a sample copy for only 25 c . Mention Radio-TV ExperimentER and tell them we gave 'em a plug.

Good listening.

- "Music of the spheres" may be one way to refer to the music produced when atoms, which resemble the universe-in-miniature, are stripped of their electrons. But it is also referred to as cold, disturbing, and downright inhuman. However, Dr. Myron Schaeffer, professor of music and head of the electronic music laboratory which he established at the University of Toronto, lets the unsympathetic critics have their say and continues creating in, if nothing else, a very exciting new art form.

Dr. Schaeffer, who has studied music in Europe, taught at Columbia University, and lectured and researched in Latin America, has also studied mechanical engineering and invented some of the equipment, or rather, instruments, used in the music laboratory. The lab, Canada's first and only the second one built in North America, contains, as shown here, quite a variety of electronic equipment which Dr. Schaeffer uses in composing.

First, he creates basic sounds on sine-wave generators and records them on a multiple creative tape recorder. Then, he cuts up the tape and splices it to get the desired result. Some of the sounds are first altered with filters, added tremolo, and modified volume. The end product, which is unique, unconventional sound, is defined as music because it is arranged. But musical traditionalists term it sheer noise.

Regardless of who calls it what, the acceptance of electronically produced music is increasing, especially in the form of scores for ballet, contemporary dance, and films. And it is more often than not beautifully effective and artistically handled in these contexts.

But, on the other hand, a concert of electronic music wears thin quickly: there is no orchestra for the audience to watch, merely a whirling reel of tape, and perhaps not even

that. A lonely stereophonic speaker set-up may be all that performs under the spotlight on center stage. To solve this visual boredom of the concert stage, Dr. Schaeffer has created patterns of color as a visual accompanyment to an electronic music score. The stage may be choreographed with cardboard mobiles, for example, and illuminated with spotlights whose colors are changed as the musical tones evolve.

The visual effects projected abstractly suggest the texture of the electronic score, and involve the audience visually.

Dr. Schaeffer reminds us that the reaction to Wagner's and Beethoven's music was unsympathetic at first. So, if you're tempted to mix some music with your hobby, the worst result will be that you'll make a big noise in your experimenters' circle.

At the far left, Dr. Schaefier rehearses concert of new works. Shadows are color patterns which mix and change in response to the musical score, color cu go-go.

At the right, the composer, Dr. Schaeffer, finalizes his score. After the musician's touch selects a part from one original tape, a duet from another, a solo excerpt from a third, and so on, the reassembled completed passage of music is recorded on a single tape. At the left, Dr. Schaeffer lends an ear to the completed tape which unifies single notes and sound sequences.

Jim Gabura, Dr. Schaeffer's assistant and an electronics engineering student, lends a hand taping sounds that, to the layman resemble a whistle and steam escaping. But to an RTVE'er they are obviously an electronically generated sine tone (the whistle) and plain white noise (escaping steam) often heard.

PROPAGATION FORECAST

June-July, 1965

By C. M. Stanbury II

It has been almost two years since 16 meters was the best band for any area at any hour of the day. But as you can see from our chart, with the sunspot count rising 16 meters is again making its presence felt in the short-wave world. As that count continues to rise, more and more international broadcasting organizations will be moving up here, and there will even be some significant activity during evening hours. Possibly the most intriguing current 16 -meter DX is Cairo's clandestine "Voice of Free Africa" on 17810 kc from 1700 to 1745 EST. This is a regular Egyptian transmitter which they switch from 17785 especially for these rebel broadcasts to Africa.

With high frequency conditions gradually
returning to "normal," logging regional SWBC stations (into which category most real DX falls) will become more difficult. For Africa and the Near East, 41 meters will take over a key position as transoceanic reception decreases on 60 and 90 meters. At the same time, powerful international transmitters will move up from 49 meters leaving a quality of Latin American DX in the clear.

With sunspots back, we can also expect ionospheric disturbances which can knock out all reception from upper and mid-lattitudes while leaving tropical signals in the clear. These disturbances fall into two cate-gories-solar flares (of short duration) and ionospheric (or "magnetic") storms that can last several days.

To use the table put your finger on the region you want to hear and log, move your finger to the right until it is under the local standard time you will be listening and lift your finger. Underneath your pointing digit will be the short-wave band or bands that will give the best DX results. The time in the above propagation prediction table is given in standard time at the listener's location which effectively compensates for differences in propasjution characteristics between the east and west coasts of North America. However, Asia and the South Pacific stations will generally be received stronger in the West while Europe and Africa will be easy to tune on the east coast. The short-wave bands in brackets are given as poor second choices. Refer to White's Radio Log for World-Wide Short-Wave Broadcast Stations list.

■ "KEH 5891, this is KEG 3382 calling" "Roger, KEJ 3382, this is KEH 5891, go ahead."
"No, no, old man, this is KEG 3382. That's G as in George."

Do you have this problem consistently, with most of your on-the-air voice contacts? After a couple of years of having other hams come back to him as "K5KKX," "K5JKS," "K5JJS," and all the other possible ways in which his call could be misunderstood, and similar problems with his present CB call, the author did a bit of study. It couldn't all be in the other fellow's ear, he felt.

The Intelligibility Problem. It wasn't, either. He found that his voice was particularly lacking in the high-frequency components which make the difference between
many letter sounds. What's more, he found that he wasn't alone in the problem. The average adult male voice is fairly low in highfrequency energy-and it seems that half the operators on the air have voices lowerpitched than average.

The author, having made this discovery, promptly modified the audio sections of all his rigs to add boost to the weak highs, with a correspondingly spectacular increase of intelligibility as the result. When the rest of the gang heard the results of the modifications, they asked for some type of device which would do the same for them.

The result was the Voyshap'r. This device, housed in the smallest available size chassis box, plugs between the mike and the rig and provides the treble boost. No modification

ham.CB voice shaper

Schematic diagram of the Voice Shaper has a very familiar appearance since ifs circuif is a basic high-pass filter. Series capacitors have low impedance af high frequencies.
of the rig is necessary.
It must be emphasized at the outset that when the Voyshap'r (or any other similar device) is used, the transmitted voice will no longer sound "natural." In the process of boosting the highs, the circuit cuts down the low-frequency energy, and it's this low-frequency component that gives the voice its individual sound.

When the Voyshap'r is doing its job, the transmitted voice will sound very much like that you hear over long-distance telephone circuits. It will be crisper and more understandable than before, but you may not be recognized so readily without your call letters!

The Circuit. The Voyshap'r consists of a three-section high-pass resistance capacitance filter, at relatively high impedance. It's designed for use with either crystal, ceramic, or dynamic microphones. It's best used in conjunction with an outboard clipper or preamplifier accessory, since if used alone it has a very slight (almost undetectable) loss which the clipper or preamp will make up.

The serics capacitors, $\mathrm{Cl}, \mathrm{C}^{2}$, and C^{2}, in

Fig. 1. This logarithmic plot of frequency vs. db shows the power distribution of an average male voice; note peak af 300 cps .

the Voyshap'r (see schematic diagram) vary in impedance depending upon the frequency of the signal applied to it. At low frequencies, their impedance is high in comparison with the fixed shunt resistors. At high frequencies, their impedance is low.

Thus at very high frequencies, near the top of the audio range, the capacitors are effectively short-circuits, and the circuit is effectively only two resistors connected in parallel across the mike line. The only effect of this is to cause a slight reduction in audio because of the power shunted around the output through the resistors; this effect is negligible.

At very low frequencies the capacitors

Fig. 2. When frequency vs. response in db is plotted for Voice Shaper, we get a linear response of $18 \mathrm{db} /$ octave. Changing component values gives even greater response.
look like almost open circuits. Specifically, at 16 cycles per second, the impedance of each capacitor is 10 megohms. This impedance acts as a voltage divider, together with the resistor in each section, to reduce the output voltage by a factor of 100 per section. Thus, at 16 cycles, the Voyshap'r will reduce the output signal to $1 / 1,000,000$ of its original value ($100 \times 100 \times 100$). This amounts to 120 db loss.

From Bass to Tenor. In the important middle audio range, from 300 to 3000 cps , it isn't quite so simple. At 1600 cps , the capacitors and the resistors have identical impedance (100,000 ohms). At first you might think the voltage-divider action would reduce output signal to $1 / 8$ that of the input ($1 / 2$ per section, times three sections)-but this neglects the effect each section has on the preceding one. In practice, the reduction is modified by the shunting effect of the later sections. Throughout the useful audio range,
the Voyshap'r's output signal increases with frequency at 18 db per octave.

Fig. 1 shows the average power distribution of the human male voice; Fig, 2 shows the 18 -dh-per-octave response of the Voyshap'r. Combining these two gives us Fig. 3, which is the output power distribution of the Voyshap'r with an average voice. The excess highs go to make up the difference for those of us who have less treble than "average" in our voices.

Construction. The most difficult part of the construction job is drilling the holes in the chassis box-that's how simple the device is! Lay out $3 / 8$-inch holes centered on each end of the box as shown in the photos, and

Fig. 3. When we plot the combined effect of Fig. 1 and Fig. 2, we get the output power distribution of the Voice Shaper working with the voice of our average ham or CB'er.
use the terminal strip as a template to mark $5 / 32$-inch holes on the top.

Then mount the terminal strip in place with $6-32$ by $1 / 4^{\prime \prime}$ screws. Resistors R1 and R2 mount on the lower parts of the terminal strip. Capacitor C1 runs from input jack J1 to the terminal strip, while C2 and C3 both mount on the strip itself. The push-to-talk

PARTS LIST

C1, C2, C3-.001-mf. ceramic disc capacitors Jl-3-conductor, $1 / 4$-inch, open circuil phone jack (Mallory 7028 or equiv.)
Pl-3-conductor, $1 / 4$-inch phone plug (LittelPlug 260 or equiv.)
R1, R2-100,000-ohm, $1 / 2$-watt resistors
$1-23 / 4^{\prime \prime} \times 2 \frac{1}{3^{\prime \prime}} \times 15 / 8^{\prime \prime}$ aluminum chassis box (Bud CU3000A or equiv.)
Misc.-3-terminal terminal strip, 2-conductor shielded oulput cable, hardware, solder, etc.

Estimated cosl: \$2.50
Estimated construction time: 1 hour

Aluminum chassis box for the Voice Shaper can be the smallest you can find. Terminal strip supports the filter components all of which are visible except for resistor R2.
wire of the output cable connects directly to J , while the audio wire of the cable connects to C3 at the terminal strip. The shielding is grounded at the strip.

The photos show a switching-type jack at J ; this was used simply because it was the only type on hand when the unit was built. The switch is an unnecessary expense.

If your mike uses a different type of connector, Jl should of course be changed to correspond with it. Alternatively, the 3-contact phone plug can be used by removing your mike connector from the mike cord and putting it on the output cable of the Voyshap'r, then putting the phone plug on the mike cable so it will plug into J1. However, this will prevent you from taking the Voyshap'r out of the line when desired.

Added Boost. Should the trehle boost effect not be great enough to suit you, you can replace R1 and R2 with resistors of just $1 / 10$ the specified value. This will almost completely eliminate all traces of hass response. However, a preamp will probably be necessary if this is done, since the Voyshap'r loss will be some 10 times greater and will probably cause a noticeable reduction of audio on the transmitted signal.

The preamp or clipper, if used, should be between the Voyshap'r and the rig. No other accessory should be connected ahead of the Voyshap'r, for maximum effect.
whether your stoplights and brake light switch are working

This ingenious circuit will put eyes in the back of your head so you'll know at a glance

By Herbert Friedman, W2ZLF/KB19457

- Driving your car with defective brake lights is a sure way to make it a candidate for the junk heap, not to mention the possibility of your incurring a few hospital bills. And even if you don't suffer a fender-bender there's always John Law ready to hand out citations for defective lights. So why risk a summons, or worse yet your life, when you can build the Safe-Lite and be years ahead of Detroit's built-in safety options.

What It Does. The Safe-Lite gives you an instantaneous check of your brake light switch and the individual stoplights merely by flicking a switch; and you don't have to get out of the car to do it, you test the stop light system in seconds from the driver's seat. And at no time does the Safe-Lite interfere or affect the normal operation of the brake switch and stop lights.

The Safe-Lite consists of a dash mounted control box and two electromagnet trigger switches, one for each stop light. The control box contains two pilot lamps-one for each stoplight-which light if the stop lights are working. When a stoplight fails, the representative pilot lamp also fails. The pilot lamps also double as a brake switch tester.

How It Does It. The two hearts of the Safe-Lite are the trigger switches, which are actually nothing more than a magnetic coil surrounding a reed switch. When the current to the stop lights flows through the coils (L 1 and L 2), a magnetic field is established around the reed switches (S1 and S2)

and the contacts close, thereby activating the supply voltage to the pilot lamps (II and 12) in the control box. (See schematic diagram.) If the left stoplight should fail the left pilot lamp won't light when the brake pedal is depressed. Similarly with the right stoplight. S3, the test switch, also sets up the two pilot lights, I1 and I2, to indicate proper operation of your auto's brake switch. If both I1 and I2 fail to light when S1 is set to the SWITCH position (and the brake is depressed) it is the brake switch that is defective.

How It's Built. The control box is built on the main section of a $51 / 4^{\prime \prime} \times 3^{\prime \prime} \times 21 / 8^{\prime \prime} \mathrm{min}$ -
iature chassis box. On one end mount the pilot lamp assemblies II and I2, and the center-off test switch, S3. On the opposite end mount a 3 -lug screw terminal strip. Use at least No. 18 stranded wire for connections, No. 16 is preferable, however. Under no circumstances use No. 20 or No. 22 hook-up wire.

What good is knowing your stoplights are defective and you're twenty miles from the nearest auto supply store? So, store spare bulbs in the cabinet cover as shown. Two common spring type tool holders-a vailable from your local hardware dealer-are used to hold the spare bulbs. They can be either screwed or epoxy cemented to the cover. Just make certain they are positioned such that they will not force the bulbs against the switch or pilot lamp assemblies when the cover is in place.

For proper operation the electromagnetic triggers, the combination of L1 and S1, and L2 and S2, must be carefully assembled. The triggers are made from G.E. type X-7 reed switch assemblies and a wind it yourself coil. Enclosed in each X-7 reed switch package is a reed switch, coil form, magnet and instructions. Discard the magnet and ignore the instructions.

The electromagnet coils L1 and L2 are made using No. 18 solid enameled wire. Before winding the coils the wire must be ten-
silized or the coils will unwind, Clamp one end of a 10 -foot section of wire in a vise and pull the other end with a pair of pliers until the wire goes dead slack. Don't pull too hard, just enough to remove the wire's resilience.

Press the wire into a slot on the left end of the coil form-allow about 6 inches for a lead-and wind a tight, closewound coil until you reach the right end. When you reach the right end, keep winding the coil in the same direction but wind a second layer from right to left, making a double wound coil. Snip off the excess wire leaving a 6inch lead, push the lead into a retaining slot and the coil is completed.

Insert the reed switch through the coil centering it so the reed terminals are at each end of the coil. Scrape away the insulation from either coil lead (it becomes the No. 1 lead), wrap the exposed lead around the adjacent reed terminal and solder. To the remaining reed terminal solder a 6 inch length of No. 16 stranded wire (this is lead No. 3). The remaining coil lead is lead No. 2.

Select a section of $1 / 2$-inch aluminum or copper tubing just a little longer than the overall length of the reed (including the end terminals) and scrape all burrs from inside the tubing. Apply a liberal amount of G.E.

RTV silicone rubber sealant on the coil (and force some into the coil around the reed switch) and insert the reed assembly into the tubing, then pack both ends of the tubing with RTV Sealant. Allow 24 hours for the sealant to dry. It will form into a resilient rubber which will absorb any shocks and vibration, thus protecting the reed switches which are glass enclosed. Repeat the above steps for the second trigger switch.

How It's Installed. Mount the control box under the dash or any other convenient location, making certain the box makes a good electrical connection to the car body. Locate the triggers in the trunk compartment near the stoplights. Sometimes some body screws protrude into the trunk, and a cable clamp mounted to these screws will retain the triggers. Now locate the brake light switch. If you have difficulty finding it, consult your shop manual or a mechanic to show you where it is. The brake switch has two terminals; one connects to the battery and one connects to the stop lights. Connect a section of No. 16 wire to the stoplight terminal and connect the other end to the S terminal on the control box.

Attach two wires to the L and R terminals (use different color wires or coding to indicate the left and right wires) and run these

The fabrication of the trigger switches is shown in these photographs. The long reed switch is inserted in the coil form which is then wound with No. 18 enameled wire. Assembled trigger combination is then enclosed in $1 / 2$-inch tubing cut to length as shown below. Rubber sealant completes job.

wires to the trunk compartment. This can be done by passing the wires under the rear seat or they can be placed in the existing channel which carries the manufacturers wiring to the trunk. The channel can be found by tracing the stoplight wires from the trunk forward.

Next, locate the brake light wires by tracing out the stoplight bulb socket(s). (Most

[^2]bulbs are the two terminal type, one for the parking/signal light and one for the stoplight.) Cut the stoplight wires at a point near the triggers and connect the free wire coming from the brake switch to trigger lead No. 1. The wire from the brake lamp connect to lead No. 2. The wires coming from the control box connect to lead No. 3. These connections can be soldered and taped or connecting plugs can be used.

How It's Used. Turn the ignition switch on. Set S3 to the SWITCH position; depressing the brake pedal will cause both indicators to light if the brake switch is working. If the brake switch is defective both indicators will fail to light. To test the stoplights set S3 to the LIGHTS position and depress the brake pedal. If both stoplights are operative both indicators will light. Test the circuit to make certain there are no wiring errors by removing the left stoplight-the left pilot should extinguish. Similarly test the right stoplight.

If in the course of your travels a stoplight should fail simply replace it with a spare bulb from the control box.

The Safe-Lite in addition to being a unique safety device, gives you that extra bit of rear-end protection, so important for motoring pleasure.

If you use an under-thedash control box to mount the switch, indicator lights and terminal strip, construct it as shown af the left. There is room left in the enclosure after the wiring of components to mount a couple of spare emergency brake light lamps.

The trigger switch of the left is clamped into the trunk on the inside of the rear fender. Mounting is quick and simple. At the right, the optimum installation position for the centrol box is determined. Study the passenger compariment of your car before enclosing the Safe-Lite to find the best place to install it.

The Oscillobrator
Continued from page 49

voltmeter, as well as to warn you of any serious fluctuations in line voltage.

The step-by-step calibration procedure is, as follows:

1. Turn the range switch $\mathbf{S} 2$ to 10, Switch S1 to OFF, and set R3 to 100 on the dial.
2. Adjust the AC voltage to as close to 3.54 volts as possible using potentiometer. This corresponds to 10 volts peak-to-peak.
3. With 3.54 volts rms applied to the Oscillobrator input jacks J 1 and J 2 , adjust the vertical gain of your scope so that the sinewave is at some conveniently measured height on the faceplate markings.
4. Turn switch S 1 to the ON position, and adjust the screwdriver control on R2 so that the two horizontal bars are the same height as the sinewave in step 3.
5. Using R7 and M1, adjust the input voltage as near to 1.75 volts as you can. This corresponds to a peak-to-peak voltage of 5 volts.
6. Turn switch S1 to the ON position and adjust the vertical gain of the scope so that the sinewave once more is at some conveniently measured height.
7. Turn switch S1 to the ON position and adjust R 3 until the squarewave is the same height as the sinewave in step 6.
8. If the indicator knob on R3 is not pointing to 50 on the dial, carefully loosen the setscrew and move the knob until it does. Before tightening the setscrew, check that the image on the scope is still the same height.

The Oscillobrator is now adjusted for 10 volts peak-to-peak at the maximum dial
reading, for 5 volts at midpoint, and for O volts at the minimum dial setting. As is the case with most measuring instruments, accuracy is greatest at midrange.

In the event you wish to check the calibration further against some additional voltages, or if you want to calibrate at a different range than 0 to 10 , use the accompanying table of various peak-to-peak voltages and their rms equivalents. You will find some variations not only due to the difficulty in reading fractional voltages on the voltmeter, but also to imperfect linearity of the wirewound potentiometer.

If these variations are objectionable, then you have no alternative but to prepare and calibrate your own dial. However, some discrepancy can usually be tolerated as long as the peak-to-peak amplitude of any given waveform will measure the same in a month or a year as it does now. Thanks to the VR tube, the Oscillobrator does this unfailingly.

Using the Oscillobrator. By the time you have completed the calibration process, you will have become a skilled operator. Since it is strictly a comparison process, you will find it useful to choose one particular set of markings on the scope grid and always adjust the vertical gain so that the signal to be measured is of that amplitude.

At first you may wish to adjust the vertical position control so that the calibrating lines occur at the same points as the peaks of the waveform being measured. The slight offset is the result of the firing pulse mentioned earlier. As you gain familiarity, however, even this adjustment will become unnecessary.

Your reaction after the Oscillobrator has been used a few times will inevitably be, How did I get along without it!

Aluminum Combination Window Serves as Antenna

An aluminum storm-screen combination window makes a good antenna for boosting the range of broadcast receivers, table-top radios, and short-wave receivers, since they cover a fairly large area.

Just clip a length of wire to the aluminum frame and connect the other end to the antenna terminal of the radio, using alligator clips for both connections. If you prefer a permanent installation, fasten the end of the
wire lead under one of the screwheads on the window frame. If your radio is an AC-DC table model, or any other type that operates off the power lines but uses no isolation or power transformer, connect a $.01 \mathrm{mfd}, 600-$ volt fixed capacitor between the antenna terminal and the aluminum window frame to isolate the frame from the radio and prevent shocks.

A point to check before connecting your new antenna: if frame touches a steel building frame, the signal may be grounded so look before you leap!

All of the components of the Tenna Tuner are mounted on the front panel and the top of the enclosure. The construction details of coil L2, whose turns are concentric within those of coil LI, are clearly visible. The solder lugs screwed to the wooden dowel coil form are the terminal points for running a twisted pair of wires to indicator lamp 11. Mounted on lop of the unit are coax jacks Jl (not visible), jack J2, and binding post BPI.

Schematie diagram of the unit shows how loading coil LI , the heart of the circuit, is tapped in single furn units by switch 53 and in units of four by switch 52 . Voltage is induced in coil $\mathbf{L 2}$ to drive indicator lamp 11. (See text for a thorough discussion of Ll-L2 theory and construction details.) Ganged switch 51 places variable capacitor Cl in series or parallel with coil LI , or removes it from the circuit entirely, or grounds the antenna input through coil $\mathbf{L I}$.

Side and end views of fabrication of indicator coupling coil $\mathbf{L 2}$ show how dowel shaft runs through phone jack which acts as bearing. See parts identification, page 88.

ELECTRONIC PARTS

1. This catalog is so widely used as a reference hook, that it's regarded as a standard by people in the electronics industry. Don't you have the latest Allied Radio catalog? The surprising thing is that it's free!
2. The new 516 -page 1965 edition of Lafayette Radio's multi-colored cata$\log _{\text {is }}$ a perfect buyer's guide for hifiers, experimenters, kit builders, CB'ers and hams. Get your free copy, today!
3. Progressive "Edu-Kirs" Inc. now has available their new 1965 catalog featuring hi-fi, CB, Amateur, test equipment in kit and wired form. Also lists books, parts, tools, etc.
4. We'll exert our influence to get you on the Olson mailing list. This catalog comes out regularly with lots of new and surplus items. If you find your name hidden in the pages, you win $\$ 5$ in free merchandise!
5. Unusual scientific, optical and mathematical values. That's what $E d$ mund Scientific has. War surplus equipment as well as many other hard-to-get items are included in this hard-to-get items are 148 -page catalog.
6. Bargains galore, that's what's in store! Poly-Paks Co. will send you their latest eight-page flyer listing the latest in merchandise available, including a giant $\$ 1$ special sale.
7. Whether you buy surplus or new, you will be interested in Fair Radio Sales Co.'s latest catalog-chuck full of buys for every experimenter.
8. Want a colorful catalog of goodies? John Meshna, Jr. has one that covers everything from assemblies to zener diodes. Listed are government surplus radio, radar, parts, etc. All at unbelievable prices.
9. Are you still paying drugstore prices for tubes? Nationwide Tube Co. will send you their special bargain list of tubes. This will make you light up!
10. Burstein-Applebee offers a new giant catalog containing $\$ 00$'s of big pages crammed with savings including hundreds of bargains on hi-fi kits, power tools, tubes, and parts.
11. Now available from EDI (Electrontc Distributors, Inc.) a catalog containing hundreds of electronic items. EDI will be happy to place you on their mailing list.
12. VHF listeners will want the latest catalog from K uhn Elecfronics. All types and forms of complete receiwers and converters.
13. No electronics bargain hunter should be caught without the latest copy of Radio Shack's catalog. Some equipment and kit offers are so low, they look like mis-prints. Buying is believing.
14. Unusual surplus and new equipment/parts are priced "way down" in a 32 -page flyer from Edlie Electronics. Get one.
15. Transistors Unlimited has a brand new catalog listing hundreds of parts at exceptionally low prices. Don't miss these bargains!

HI-FI/AUDIO

13. Here's a beautifully presented brochure from Altec Lansing Corp. Studio-type mikes, two-way speaker components and other hi-fi products.
14. A name well-known in audio circles is Acoussic Research. Here's its booklet on the famous $A R$ speakers and the new AR turntable.
15. Garrard has prepared a 32-page booklet on its full line of automatic turntables including the Lab 80, the first automatic transcription turntable. Accessories are detailed too.
16. Two brand new full-color booklets are being offered by ElectroVoice, Inc. that every audiophile should read. They are: "Guide to Outdoor High Fidelity" and "Guide to Compact Loudspeaker Systems."
17. A valuable 8 -page brochure from Empire Scientific Corp. describes technical features of their record playback equipment. Also included are sections on basic facts and stereo record library.
18. Tape recorder heads wear out. After all, the head of a tape deck is like the stylus of a phonograph, and Robins Industries has a booklet showing exact replacements. Lots of good info on how the things are built, too.
19. A wide variety of loudspeakers and enclosures from Utah Electronics lists sizes shapes and prices. All types are covered in this heavily illustrated brochure.
20. Here's a complete catalog of high-styled speaker enclosures and loudspeaker components. University is one of the pioneers in the field that keeps things up to date.
21. When a manufacturer of highquality high fidelity equipment produces a line of kits, you can just bet that they're going to be of the same high quality! H. H. Scolt, Inc., has a catalog showing you the full-color, behind-the-panel story.
22. An assortment of high fidelity components and cabinets are described in the Sherwood brochure. The cabinets can almost be designed to your requirements, as they use modules.
23. Very pretty, very efficient, that's the word for the new Betacom intercom. It's ideal for stores, offices, or just for use in the home, where it doubles as a baby-sitter.
24. Tone-arms, cartridges, hi-fi, and stereo preamps and replacement tape heads and conversions are listed in a complete Shure Bros. catalog.

TAPE RECORDERS AND TAPE

31. "All the Facts" about Concord Electronics Corporation tape recorders are yours for the asking in a free booklet. Portable battery operated to four-track, fully transistorized stereos cover every recording need.
32. "The Care and Feeding of Tape Recorders" is the title of a booklet that Sarkes-Tarzian will send you. It's 16 -pages jam-packed with info for the home recording enthusiast. Includes a valuable table of recording times for various tapes.
33. Become the first to learn about Norelco's complete Carry-Corder 150 portable tape recorder outfit. Fourcolor booklet describes this new car-tridge-tape unit.
34. The 1964 line of Sony tape recorders, microphones and accessories is illustrated in a new 16-page full color booklet just released by Superscope, Inc., exclusive U.S. distributor.
35. If you are a serious tape audiophile, you will be interested in the new Viking of Minneapolis line-they carry both reel and cartridge recorders you should know about.

HI-FI ACCESSORIES

76. A new voice-activated tape recorder switch is now available from Kinematix. Send for information on this and other exciting products.
77. A 12-page catalog describing the audio accessories that make hi-fi living a bit easier is yours from Swirchcraft, Inc. The cables, mike mixers, and junctions are essentials!

KITS

41. Here's a firm that makes everything from TV kits to a complete line of test equipment. Conar would like 10 send you their latest catalog-just ask for it.
42. 1lere's a 100 -page catalog of a wide assortment of kits. They're high-styled, highly-versatile. and Heath Co. will happily add your name to the mailing list.
43. Want to learn about computers the easy way? Brochure from Digication Electronics describes its line of transistorized kits.
44. A new short-form catalog (pocket size) is yours for the asking from EICO. Includes hi-fi, test gear, CB rigs and amateur equipment-many kits are solid-state projects.

AMATEUR RADIO

45. Catering to hams for 29 years, World Radio Lahoratories has a new FREE 1965 catalog which includes all products deserving space in any ham shack. Quarterly fliers, chock. full of electronic bargains are also available.
46. A long-time builder of ham equipment. Hallicrafters, Inc. will happily send you lots of info on the ham, CB and commercial radio-equipment.

CITIZENS BAND

 SHORT-WAVE RADIO48. $H y$-Gain's new 16 -page $C B$ antenna catalog is packed full of useful information and product data that every CB'er should know about. Get a copy.
49. Want to see the latest in communication receivers? National Radio Co. puts out a line of mighty fine ones and their catalog will tell you all about them.
50. Are you getting all you can from your Citizens Band radio equipment? Amphenol Cadre Industries has a booklet that answers lots of the questions you may have.
51. If you're a bug on CB communications or like to listen in on VHF police, fire, emergency bands. then Regency Electronies would like to send you their latest specs on their receivers.
52. When private citizens group together for the mutual good, something big happens. Hallicratters, Ine. is backing the CB React teams and if you're interested in CB, circle \#53.
53. A catalog for CB'ers, hams and experimenters, with outstanding values. Terrific buys on antennas, mikes and accessories. Just circle \#54 to get Grove Electronics free 1964 Catalog of Values.
54. Interested in CB or business band radio? Then you will be interested in the catalogs and literature Mosley Electronics has to offer.

Also see ltem 46.

SCHOOLS AND EDUCATIONAL

56. Bailey Institute of Technology offers courses in electronics, basic electricity and drafting as well as refrigeration. More information in their informative pamphlet.
57. National Radio Institute, a pioneer in home-study technical training has a new book describing your opportunities in all branches of electronics. Unique training methods make learning as close to being fuo as any school can make it.
58. Would you like to learn all about television servicing quickly at home? Coyne Electronics /nstitute would like to show you how easy it is, and at a low cost, too.
59. For a complete rundown on curriculum, lesson outlines, and full details from a leading electronic school. ask for this brochure from the Indiana Hame Study Institute.
60. Facts on accredited curriculum in E. E. Technology is availablo from Central Technical Institute plus a 64 page catalog od modera practical electronics.
61. ICS (International Correspondence Schools) offers 236 courses including many in the fields of radio. TV, and electronics. Send for free booklet "lt's Your Future."

ELECTRONIC PRODUCTS

62. Information on a new laberansistor kit is yours for the asking from Arkay Imternational. Educational kit makes 20 projects.
63. Try instant lettering io mark control panels and component parts. Datak's booklets and sample show this easy dry transfer method.
64. If you can use 117 -volts. 60-cyele power where no power is available, the Terado Corp. Trav-Electric 50-160 is for you. Specifications are for the asking.
65. Government surplus nickel cadmium cells can be yours at a fraction of original cost! Send for Esse Radio's 3 -page fiyer.
66. Get the most measurement value per dollar." That's what Electronic Measurements Corp. says. Looking through the catalogue they send out, they very well might bo right!

TELEVISION

70. The first entry into the color-TV market in kit form comes from tho Heath Company. A do-it-yourself money saver that all IV watchers should know about.
71. Attention. TV servicemen! Barry Electronics "Green Sheet"' lists many TV tube. parts, and equipment buys worth while examining. Good values, sensible prices.
72. Get your 1964 catalog of Cisin's TV. radio, and hi-fi service books. Bonus-TV lube substitution guide and trouble-chaser chart is yours for the asking.

SLIDE RULE

74. Get your cony of CIE's (Cleveland Institute of Electromics) 2-color data sheet on their clectronics slide rule and information on their free "Auto-Programmed" 4-lesson instruction course.

10015

78. Now you can get color coded nutdrivers in handy, plastic cases as well as conventional wall racks and bench stands. Xcelite's newly revised 16 -page Catalog 162 gives full information.

Radia-TV Experimenter, Dept. LL-748

505 Park Avenue, New Yark, N. Y. 10022
Please arrange to have the literature whose numbers I have encircled sent to me as soon as possible. I am enclosing 25 (no stamps) to cover handling charges.

	1	2	3	4	5	6	7	8	9	10	11	12	13
Be	14	15	16	17	18	19	20	21	22	23	24	25	26
Sure To	27	28	29	30	31	32	33	34	35	36	37	38	39
Enclose	40	41	42	43	44	45	46	47	48	49	50	51	52
25	53	54	55	56	57	58	59	60	61	62	63	64	65
	66	67	68	69	70	71	72	73	74	75	76	77	78

NAME (Print cleariy)
ADDRESS

CITY
STATE
ZIP CODE

Tenna Tuner
Continued from page 8.5

The Tenna Tuner construction details which follow and reference to the drawings and photographs, should offer no fabrication difficulties to the builder.

The Cabinet. This item should receive first consideration inasmuch as one half of the cabinet housing the components serves the purpose of panel mounting all of the items. To achieve this, a chassis box, $10^{\prime \prime} x$ $6^{\prime \prime} \times 3^{1 / 2 \prime \prime}$ was selected. The two halves of this cabinet separate into two ' L ' shaped portions and as all components are mounted on but one half, the entire unit may be removed from its cabinet without trailing wires (other than the antenna lead) betwecen the two halves. This permits mounting the blank section of the cabinet which carries no equipment other than the coax connectors and

Construction Details for Coupling Coil 12 (See page 85)

A-Front panel adjusting knob
B- $1 / 4^{\prime \prime}$ wooden dowel shaft
C-Hexagonal nut
D-Washer
E-Front panel
F-Single open circuit phone jack
G-15/8" wooden coil form
H-Lugs for connection to winding
l-Pick-up winding
J-Twisted pair to indicator lamp

> PARTS LIST
> BP1—Binding post for single lead antenna
> C1-11.5 to 53 mmf . double-spaced variable capacitor (Hammarlund MC-50-5X or equiv.) 11 -Indicator lamp assembly Bayonet base ILafayetfe Radio 33G6109)
> J1, J2—Coaxial receptacles (Amphenol 83-1R or equiv.)
> L1-20 turns, No. 12 tinned bare copper wire, $21 / 2$ inches diameter (Air-Dux 2004T or equiv.)
> L2-7 turns No. 20 hookup wire on $1 \mathrm{~s} / \mathrm{s}$-inch diameter dowel (see text)
> 51-2-gang, single-pole, 4-position rotary switch (Centralab 2542 or equiv.)
> S2, S3-1-gang, single-pole, 4-position rotary switches (Centralab 2542 or equiv.)
> $1-10^{\prime \prime} \times 6^{\prime \prime} \times 31 / 2^{\prime \prime}$ flangelock chassis box LMB 1063 EL or equiv.l
> Misc.-Dial plates, tuning knobs, binding posts. phone jack shaft bearing, $13 / \mathrm{s}^{\prime \prime}$ wooden coil form, $1 / 4^{\prime \prime}$ dowel, soldar lugs, hardware, wire, solder, panel decals, rubber feet, etc.

Estimated cost: $\$ 10.00$
Estimated construction time: $\mathbf{8}$ hours
open wire feeder binding post, directly to a wall or table top or it may be fitted with rubber feet and merely rest on the operating table. Obviously, any suitable metal cabinet may be used. The LMB aluminum box (see parts list) was chosen from the standpoint of accessibility to its interior and convenience in mounting components and accomplishing wiring. It provides a neat and substantial enclosure as well.

The Loading Coil. Coil L1 is an air-spaced inductor $21 / 2$ inches in diameter with 20 turns of \#12 tinned, bare copper wire. Spacers on the coil shown are of polystyrene insulation cemented to the winding at the factory. Taps are taken off at every turn for four turns from one end and then every fourth turn to the opposite end of the coil. These should be left about six inches long initially and cut to proper length as they are soldered to the coil switches S2 and S3.

The Variable Capacitor. A ceramic insulated, 50 mmf , double-spaced transmitting type of capacitor is used for C1. As indicated in the schematic diagram, this capacitor is wired into the circuit through switch SI so that when the switch arm is in the No. I position, the capacitor is in series with the antenna, coil and transmitter output. In the No. 2 position the capacitor is disconnected from the circuit and the loading coil is in series with the antenna and transmitter with no added capacity. The No. 3 position places the capacitor in parallel with the loading coil and in position 4, the antenna is grounded through the coil.

The Output Indicator. Essentially the foregoing paragraphs describe the Tenna Tuner proper. And added refinement is in the output indicator which is a simple device electro-magnetically and from that standpoint requires no further description other than its physical installation. The mechanical arrangement of the coupling coil, while somewhat unique, is also extremely simple and is best explained by the component location photograph and a few words of clarification. Note that we previously mentioned that the method of varying the coupling of the output indicator coil L2 to the loading coil LI, required occasional adjustment. Just as you move a loop of wire soldered to the terminals of a dial light bulb, along the convolutions of the tank coil or final amplifier inductance in your transmitter in order to obtain a satisfactory point at which to judge the brilliance of your bulb, you must also
(Concluded on page 90):

ADDITIONAL INCOME

MAKE Mall Order pay. Get "How To Write a Classiffed Ad That Pulle. In cludes certificate worth 32.00 toward classified ad in $\mathrm{S}_{\mathrm{o}} \mathrm{M}$. Send $\$ 1.00$ to C. D. Whlson. Science \& Mechanics. 505 Park
Ave.. New York. N. Y. 10022 .

AUTO TRAILERS \& SUPPLIES

BUILD Expanding Eight Foot Trailer. Accommodates Five. Literature 106. Fra-Mar Company. Wilmington. Mass.

BATTERIES-GENERATORS

BATTERY Secret. Guaranteed Last 5-Years Longer. Write Joe's, Box 1115-SC, Modesto. Callf.

BIG MAIL

YOUR Name Listed with 1000 Mallers. Publishers. Imprinters. etc. Our mailing each month \$1.00. Dixle Mailers, King. North Carolina

BOATS, MOTORS \& MARINE SUPPLIES
BOAT Kits! Factory molded ftberglass or pre-assembled plywood. 50 models. 12 to 30^{\prime}. Free catalog. Luger. Dept. UC-65 8200 Access Road. Minnespolis 31. Minn.
FULL size. cut-to-shape boat patterns. blueprints. Send 50 for big New illustrated "Build a Boat" catalos includes Fishing Boats. Garvies. Cruisers. Catamarans. Houseboats-Outboards. Inboards. Balloats- booklet $\$ 2.50$. Cleveland Boat Blueprint Co.. Box 18250 . Cleveland. Ohio.
CONVERT your present boat tratler winch to power. For complete instructions send $\$ 1.00$ to Winch. P.O. Box 642. Sheboygan. Wis.
EIGHT Foot Pram Kit $\$ 39.85$. Salling Rigs available. Butler. Xi23. Marblehead. Rigs available.
Massachusetts.

ELIMINATE Underwater corrosion any size boat. Box 823. So. Miaml. Fls. 33143.
"FISHHOOK" Sunfish or similer type Boat. metal wall storage Boat Bracket. "Theft proof" requires no extra space. Mention if vertical or horizontal hanging. Can be installed on masonry. wood or tree. Send check or money. order for Lakes. New Jersey.

BOOKS \& PERIODICALS
BOOKS for everyone. Catalogs mailed 15t. Myers Books. Marquand. Mo. 63655.

BUSINESS OPPORTUNITIES

I MADE $\$ 40.000,00$ a Year by Mallorder. Helped others to maxe money! Start with $\$ 10.00$-Free Proof. Torrey. Box 3565-T. Oklahoma City 6. Okle.
FREE Book " 890 Successful LittleKnown Businesses. Fuscinating! Work home! Plymouth-811-O. Brooklyn 18. N. Y.

CAMERAS \& PHOTO SUPPLIES

FREE Illustrated photographic bargain book. Central Camera Co.. Dept. 36-H. 230 So. Wabash. Chicago. ill.

[^3]"Pulling Power Is Amazing"
Chansted PLAcE
Classified Ads only 554 per word, each insertion, minimum 10 words, payable in advance. For information on Classified ads-to be included in our next RADIO-TV EXPERIMENTERwrite C. D. Wilson, Mgr., Classified Advartising, 505 Park Ave., New York, N. Y. 10022.

CAMPERS, CAMPING EQUIPMENT
 R TENTS

CAMPER Units-Compact buses. vansBuild yourself-Plans, instructions, photographs. Set SM2 for Volkswagens SM4. Campers. Box 67J. Saugus. Calif. OUTDOORSMEN! You'll Want to receive every issue of Camping Journal. written by pros for man-sized reading. Read what they say about equipment. food. rigs. first ald-all aspects from wilderness camping to frearms fo your met camp cooking. Send \$4.50 for subsciption to Camping Journal. 505 Park Ave.. New York. N. Y. 10022.

Make your classified ad payl This hand book tells how-with examples; included is a Credit Certificate worth $\$ 2.00$ to ward the cost of a classified ad in S \& M. For a copy of "How to Write a Classified Ad That Pulls," send $\$ 1.00$ to C. D. Wilson. Science \& Mechanics, 505 Park Ave., New York, N. Y. 10022.

COINS, CURRENCY \& TORENS

UNCIRCULATED Mexican Sllyer Peso 1962. Plus ten different forelgn coins. \$1.45. McMahon 2626 Westheimer. Houston. Texas 77006.

COINS Wanted-Top Dollar. Free list Capo. 1030 Morris St. Philadelphia Pennisylvania 19148.
LINCOLN Cent sets 1941-1964 complete. 63 Coins Fine to Uncirculated in holder 33.85. John Wright, Box 5585. Washington, D. C. 20018.

EARTHWORMS

BIC Money Raising Fishworms and Crickets. Free ilterature. Carter Farm-O. Crickets. Free
Plains. Georgia.

EDUCATION INSTRUCTION

"THE Real Atom" and "Elementary Particle Structure and Keys to the Universe. ${ }^{\text {P }}$ The beginning of Man's Final Picture of Material Reality. Price $\$ 1.00$ Postpaid. The Real Atom. P.O. Box 245 , Claysville. Penna.
CATALOG of all Science \& Mechanics Craftprints. Send 254 to cover postage and Craftprints. Send 258 to cover postage and Mechang to crartprint Dv.. New Yors. N. Y. 10022.

ELECTRONIC KITS E SERVICES

ELECTRONIC Kits Wired and Tested. Eiectronic Fabrications, 1717 N . Ft. Harrison. Clearwater, Fla.

BUILD a hich precision all purpose tachometer, 3 ranges. Measures speeds on tape recorders. lathes, cutting tools. auto engines, many more uses. Only $\$ 169.95$. Kit Division. Science \& Mechanics. 505 Park Ave.. New York. N. Y. 10022.

FISHING TACKLE, BAIT \& LURES

MORE Fun. Action. Fish With Three Way Fish Call Only \$14.05. Free Trial Offer-Lures with Order Now! E. G. Van Orman. P.O. Box 756. Atascadero Callfornla 93422.

ANGLERS! "Fisherman's' Summer Edition is now avallable. Enjoy your favorite sport more by reading what the experts say about walleye fishing, artificial Jures. trolling. surfcasting. plus much more. Bend \$1.00 to: Flisherman. \# 738, 505 Park Ave. New York. N. Y. 10022. Or start your one year subscription. \$3.00.

FLORIDA LAND

FLORIDA Water Wonderland-Home cottage. Mobilesites. Established area $\$ 590.00$ full price. $\$ 9.00$ month. 8 wimming, fishing. boating. Write: Lake Weir Box MK38. Silver Springs, Florid AD 6-1070 (F-1).

FOR INVENTORS

PATENT Searches - 48 hour alrmall service. $\$ 6.00$. Including nearest patent coples. More than 200 registered patent attorneys have used my serice. Miss inventlon Protection porms. Wir Box Ann Hastings. Patent Searcher. P. O. Box 176. Washington 4. D. C.

GIFTS THAT PLEASE

1000 NAME and Address Labels $\$ 1.00$. LaParl. 1513 Springwells. Detrolt. Mich. 48209.

GIVE the best reading in the Mechanica Field-give Science \& Mechanics! The pros tell all about Automobles. Science, Electronics. Another plus: the large new "FiXiT" Section. $\$ 4.00$ for year's subscription. Science \& Mechanles. 505 Pary Ave. New York. N. Y. 10022.

HYPNOTISM

NEW concept teaches you self-hypnosis quickly! Free itterature. Smith-McKinley. Box 3038. San Bernardino. Callf.
SLEEP-Learning-Hypnotism! Strante catalog free! Autosuggestion. Box 24-TV catalog freel Autosugg

INVENTIONS WANTED

INVENTORS! We will develop, sell your idea or invention patented or unpatented. Our national manufacturer-clients are urgently seeking new items for highest oubright cash sale or royalties. Financial sight cash sale or royalies. available. io years proven periormance. For free information. Write 79 Wali Street. New York 5, N. Y.

MAILING LISTS

YOUR Name listed with 1000 Mallers. Publishers. Importers. etc. Our mallins each month \$1.00. Dixie Mallers. King. Ngrth Carolina.

MONEYMAKING OPPORTUNITIES

FOR Money Making Opportunitles. Business Building Offers. Write Tojocar. 2907-A West 38th Place. Chicago. Ill. 60632 .

DOZENS of successful ways to be your own boss or conduct a small buainess proftably. Get your copy of Income Opportunities-only $\$ 1.00$ or order a subscription for $\$ 4.50$. Write Income Opportunities, 505 Park Ave.. New York. New
York 10022 .
A ugust-September, 1965

MUSIC \& MUSICAL INSTRUMENTS
GUITAR. easy chord method $\$ 1.25$. W. Kazaks, 234 East 58th Street. New York. 10022.

OFFICE EQUIPMENT SUPPLIES

YOUR Name Listed with 1000 Mallers. Publishers, Importers. etc. Our malling each month $\$ 1.00$. Dixie Mallers, King. North Carolina.

PATENT SERVICE

Patent Searches. 86.00; For free "Invention Record ${ }^{\prime \prime}$ and '• Important Information Inventors Need." wirite Miss Hayward, 1029-D Vermont. Washington 5. D. C.

PETS-DOGS, BIRDS, RABBITS, ETC.
MAKE big money raising rabbits for us. Information 25c. Keeney Brothers, New Freedom. Penna.

PRINTING, MIMEOGRAPHING \& MULTIGRAPHING

1000 BUSINESS Cards. (Raised Letters) Blue or Black Ink. $\$ 3.95$ Postpald. Free Samples. John H. Taylor, R.D. 2. Box 215 , West Middlesex, Pa. 16159 .

INVESTIGATE Accident. Earn $\$ 750.00$ to $31,500.00$ monthly. Car furnished. Expenses pald. No selling. No college educaU . S. Canada or overseas. Investigate full time. Or earn 88.44 hour spare time. Men urgently needed now. Write for Free Men urgently needed now. Write for Free Universal. CMH 881 , no obligation Texas.

RADIO \& TELEVISION

CONVERT any television to supersensitive, blg-screen ascilloscope. No electronle experlence necessary. Only minor changes required. Illustrated plans $\$ 2.00$. Reico A30, Box 10563, Houston, Texas 77018.
RADIO \& TV Tubes 33 k -Free List. Cornell. 4215-17 University. San Dlego 5 . Callfornia.

JAPAN \& Hong Kong Electronks Directory. Products. components. supplies. 50 nrms-Just $\$ 1.00$. Ippano Kaisha Ltd.. Box 6268. Spokane. Wash. 99207.

SONGWRITERS

POEMS wanted for new songs. Send poems. Crown Muslc. 49-SC West 32 .

FACTS-Any Subject-Product. Send \$1.00 Today For "Copyright Plan." Reports. Surveys. Research. SM. Box 1431, Greenville. So. Carolina 29602.

START YOUR OWN BUSINESS

MAKE Mail Order pay. Get "How To Write a Classified Ad That Pullis." Includes certificate worth $\$ 2.00$ toward classified ad in S \& M. Send $\$ 1.00$ to C. D. Wilson. Sclence \& Mechanics, 505 Park Ave., New York, N. Y. 10022.

TREASURE FINDERS-PROSPECTING EQUIPMENT

TREASURE Hunter's - Prospector's News. Sample 10c. Exanimor Press. Weeping Water. Nebr. 68483 .

NEW supersensitive transistor locators detect buried gold. silver. colns. Eits assembled models. $\$ 19.95$ up. Free catalog. Relco-A30, Box 10563, Houston, Texas 77018.

WATCHES, WATCHMAKING \&

REPAIRING

SHORT-Wave Listener's Global Watch. Local-World time conversion. Swlas Made. Write Nordlund Products. 7635 Irvine
Park, Chicago 34, Il.

For Greater Classified Prøfits WHY NOT TRY THE NEW combination classified ad medium

For $\$ 1.75$ per word-your classified ad will appear in SCIENCE \& MECHANICS MAGAZINE os well os in four SCIENCE \& MECHANICS HANDBOOKS. Write now for information to C. D. Wilson, Manager, Classified Advertising, SCIENCE \& MECHANICS, 505 Park Ave., New York, N. Y. 10022.

Tenna Tuner

Continued from page 88

do so in this tuning unit to achieve the same result. But where you must have access to the interior of a transmitter in order to couple an indicator lamp loop to the tank coil, we accomplish it in this little tuner by the simple manipulation of a knob on the front panel. Not by turning the knob clockwise or counter-clockwise, but by pulling it out or pushing it in. Note the use of a conventional single circuit phone jack to serve as a bearing for the shaft of L.2. The spring on the jack provides sufficient friction on the dowel shaft to maintain any chosen setting.

How Many Turns? The only experimentation necessary with 1.2 if you follow the mechanical arrangement shown in the construction details is determining the number of turns you will need on the coil form. Initial tests were made with a \#47 pilot light bulb and 5 turns on L2, wound on a $15 / 8^{\prime \prime}$ diameter wooden core (closet rod stock at any lumber yard). This proved entirely satisfactory on the 20,40 and 80 meter bands although the
indicator coil coupling knob required some slight re-adjustment for each band. On 10 and 15 meters, no illumination could be obtained with this bulb. Several transmitters were tried: EICO models 723 and 720, Viking Adventurer, Knight T-50 and T-60 and the Viking Navigator and Viking RANGER II. No indication was obtained on the lamp from any of these although all were good on the lower frequencies. Changing bulb types still did not correct this. Next. the number of turns on the coupling coil was reduced to three. Fine then on 10,15 and 20 but nothing on 40 or 80 ! So, we went the other way although theoretically it didn't quite add up. We tried seven turns on the coupling coil: we then got satisfactory illumination on all bands, 10 through 80 inclusive, with but slight re-adjustment of the coupling control knob on each band.

So, that part is up to you: you'll have to match up the number of turns on the coupling coil, and the type of lamp you are using, to your power output. There is a combination which will give you a satisfactory indication not only in the restricted novice bands but in those open to the general class ham as well.

Volume 44, No. 1

/ up-to-date Broadcasting Directory of North merican AM, FM and TV Stations. Including a ipecial Section on World-Wide Short-Wave Stations

TV Experimenter, the Log will contain the following listings: U.S. AM Stations by Call Letters, U.S. FM Stations by Call Letters, Canadian AM Stations by Call Letters, Canadian FM Stations by Call Letters, and the expanded Short-Wave Section.

Therefore, in any three consecutive 1965 issues of Radio-TV Experimenter magazines, you will have a complete cross-reference listings of White's Radio Log that is always up-to-date. The three consecutive issues are a complete volume of White's Radio Log that offers up to the minute listings that can not be offered in any other magazine or book. If you are a broadcast band DX'er, FM station logger, like to photograph distant TV test patterns, or tune the short-wave bands, you will find the new White's Radio Log format an unbeatable reference.

QUICK REFERENCE INDEX

U.S. AM Stations by Frequency. 92

Canadian AM Stations by Frequency. 102
U.S. Commercial Television Stations by States 103
U.S. Educational Television Stations by States 105

Canadian Television Stations by Cities. 106
World-Wide Short-Wave Stations................. . . 106 frequency in kilocycles; W.P., watt power; d-operates daytime only. Wave length is given in meters.

Kc. Wave Length

540-555.5

kVIP Reddini, Callif. KFMB San Dicgo, Calir. 50000
woak Columbus, Ge KBRV Soda Springs. idaho KNOE Monroe, La. WOMC Pocomoke City. Ma. WETC Wing. N. Y
WETC Wendell-Zebulon.
WARO Canonsburg. Pa.
WYNN FIorente. S.C.
WOXN Clarksville, Tenn 250 d Whic Riehiands. Ya.

550-545.1

KENI Anehorage. Alaska竍 KAFY Bakerincld, Calis. Kral craig. colo. WAYR Oranje Park, fla WGGA Gainesville. GA. KMYI Wailuku Hawaii KFRM Concordia, Kansas WCBI Columbuss, Misa KSO St. Louis. Mo. WGR Buffaio. N.Y. WOBM Statesville, 'N.C. KFYR Bismarek. N.Dak. WKRC Cincinnati, Ohio KOAC Corvallis. Oreg. WHLM Bloomsburg. Pa. WPAB Ponee. P. R . WXTR Pawtuekei, R.I. KCRS Mldiand. Tex. KTSA San Antonio. Tex. WDEV Waterbury. Vit. WSVA Harrisonburg.
KARI Blaine, Wash. KARI Blaine, Wash.
WSAU Wausau. Wis.

560-535.4

WOOF Dothan. Ala. KSFO San Fran.. Callf. KLZ Denver, Colo. WIND Chicano ill. WWIK Middlesbers. Ky. WGAN Portland. Maine WHYN Springfeld. Mass. WGTE Nonroe. Mich. WEBC Duluth. Minn. KWTO Springfleld, Mo. WGAN Great Falls. Mont. WFIL Philadelphia. Pa. WIS Columbia, S.C. WHBQ Memphis, Tenn. KLVI Beaumont, Tex. KPQ Wonatcheo, Wash. WJLS Beekiay, W.Va,
570-526.0
WAAX Gadeden. Ala. KLAC Los Angeles, Callf. WGME Washington, D.C. WFSO Pinellas Park, Fla. WACL Wayeross, Ga. WKYX Paduesh. Ky. WYYX Padueah. Ky KGRT Las Cruses. N. Mex. WMCA Now York. N.Y WWM Syshaylle. N.C WLLE Ralelah. N.C WKBN Youngstown. Ohlo WNAX Yankton S.Oak.
WFAA Dallas, Tox.

Fla. 50000 d
N.c.
W.P.
 5000Sond
500d.C. 250 d250d1000 d
000
250

1000

1000

5000

Kc. Wave Length W.P. WBAP Ft. Worth. Tex.
KLUB Sait Lake City, Utah 5000
5000 $\begin{array}{lr}\text { KLUB Salte, Wash. } & 5000 \\ \text { KYi Seatter }\end{array}$ Wmam Marin
$580-516.9$
WABT Tuskegee, Ala, KMAN Fresnon. Calif KUBC Montrose, Colo. WDBO Orlando, Fia. WGAC Augusta, Ga, KFXD Nampa, Ida WILL Urbana, III. KSAC Manhattan. Kans. KABW Topeka, Kans, WTAG Worcester Mass WELO Tupelo. Niss. KANA Anatonda, Mont. KWIN Ashland, Oren. WHP Harrisburg. Pa. KKAQ San Juan. P.R. WRKH Roekwood, Tenn KOAV Lubbock. Tex. WCHS Charleston. W.Va. WKTY LaCrosse. Wis.
$590-508.2$
KHAR Anehorase, Alaske WRAG Carrolliton. Ala. KBHS Hot Springs. Ark. KTHO Tahoe Valley, Calif. KCSJ Pueblo. Colo. WDLP Panama City, Fla WPLO Atianta, Ga. KGMB Honolulu. Hawall KID Idaho Falls. Idaho WVLK Lexington. Ky. WEEI Boston. Mass. WKZO Kalamazoo, Wich KGLE Glandive, Mont WOW Omaha, Nebr. WGTM WIIson. N.C KUGN Eupene. Oree. WARM Seranton. Pa. KTBC Austin. Tex. KSUB Cedar City, Utah WLVA Lynchburg. Va
KHQ Spokane. Wash.
$600-499.7$
WIRB Enterprlse. Ala. KCLS Flagstafi, Arlx. KVCV Redding. Callif. KZIX Ft. Collins, Colo. wICC Bridepert, Conn. WPOQ Jacksenvilie. Fia. Wwom New Orieans, Lew WFST Caribou. Maine WCAO Baltimore. Md WLST Escanaba, N WTAC Flint. Mieh. KGEZ Kalispell, Mont WCVP Murphy, N.C. WSIS winston.Salem. N.C. KSJB Jamestown. N.D WSOM Salem, 0 . WFRM Coudersport. Pa. WAEL Mayaguez. P.R. WREC Memphis. Tonn KROD EJ Paso. Tenn KERB Kermit, Tex. KTBS Tyler. Tex.

$610-491.5$

WSGN Birmingham. Ala. 50000 KFAR Fairbanks, Alaske
8000
1000 d
5000 d
5000

Kc. Wave Length W.

620-483.6
$\begin{array}{ll}\text { KTAR Phoonix, Ariz. } & 5000 \\ \text { KNGS Hanford, Calif. } & 1000\end{array}$
$\begin{array}{lr}\text { KNGS Hanford, Callif. } & 1000 \\ \text { KW8O Mt. 8hasta, Callf. } 1000 \mathrm{~d} \\ \text { K8TR Grand Junetien. Cols. } 5000 \mathrm{~d}\end{array}$
K8TR Grand Junetion. Cole. 5000 d
WSUN St. Petersburs. FIn. 5000
WTRP Lt. Petersburn. FIa.
KWAL Wallate. Ga.
KWNS Wallate. Jdaho
WTMT Loulsvilite, Ky.
WLBZ Bangor. Malne
WJOX Jaeksen. Wiss.
WVNJ Newark. N.J.
WHEN Syraeuse. N.Y.
WDNC Ourham. N.C.
KGW Pertiand, Oref.
WHIB Greensburg. Pa.
WCAY Cayee. S.C.
WATE Knoxyllia. Tenn. 5000
$\begin{array}{ll}\text { KWFT Whehita Falls. Tex. } & 5000 \\ \text { WVMT Burlington, Vt. } & 5000 \\ \text { WWM }\end{array}$
WWNR Beckley, W,
WWNR Beekley, W. Va.
WTMJ Pllwatee. WIs. 5000
$630-475.9$
WAVU Albertville. Ala.
WIOB Themasville. Ala.
KJNO Juneau. Alask
KVMA magnelia, Ark.
KIDD Menteroy. Callif.
KHOW Denver, Colo.
WMAL Washington. D.C.
WSAV Savannah. Ga.
KIDO Becos, GA.
KLDO Bolse, ldahe
1000 WLAP Lexington. Ky.
WJMS Ironwoed. Mich.
KOWB So. St. Paul.
KOWB So. St. Paul. Win
KXOK St. Louls. Mo.
KGVW Belgrade, Mont.
KOH Reno, Nev.
KLEA Lovington, N. Mex.
WIRC Hickery. N.C.
WMFD Wilmington. N.C.
KWRO Coquille, Orig
WEJL Seranton. Pa.
WKYN San Juan. P.R.
WPRO Providence. R.I.
KGFX Plerre. S. ÓR.I.
KMAC San Antonio. Tex.
KMAC San Antonio. Tex, 200 d
K $8 \times X$ Salt Lake City, Utan 1000 d
KGON Edmunds. Wash. 5000 d
KZUN Dpportunity, Wash. 500d
$640-468.5$
KFI Los Angeles, Callf.
WOI Ames. Iowa
WHLO Akron. Ohlo
WNAD Norman. Okla.
$650-461.3$

Every effort has been made to ensure occuracy of the
information listed in this publicotion, but absolute
accuracy is not guaranteed and, of course, only in-
formation available up to press-time could be in-
cluded. Copyright 1965 by Science \& Mechanics Pub-
lishing Co., a subsidiary of Dovis Publications, Inc.,
505 Park Avenue, New York, New York 10022 .
Every effort has been made to ensure occuracy of the
information listed in this publication, but absolute
accuracy is not guaranteed and, of course, only in-
formation available up to press-time could be in-
cluded. Copyright 1965 by Science \& Mechanics Pub-
lishing Co., a subsidiary of Dovis Publications, Inc.,
505 Pork Avenue, New York, New York 10022 .
Every effort has been made to ensure accuracy of the
information listed in this publicotion, but absolute
accuracy is not guaranteed and, of course, only in-
formation available up to press-time could be in-
cluded. Copyright 1965 by Science \& Mechanics Pub-
lishing Co., o subsidiary of Dovis Publications, Inc.,
505 Park Avenue, New York, New York 10022.
Every effort has been made to ensure accuracy of the
information listed in this publication, but absolute
accuracy is not guaranteed and, of course, only in-
formation available up to press-time could be in-
cluded. Copyright 1965 by Science \& Mechanics Pub-
lishing Co., a subsidiary of Dovis Publications, Inc.,
505 Park Avenue, New York, New York 10022.
Every effort has been made to ensure accuracy of the
information listed in this publicotion, but absolute
accuracy is not guaranteed and, of course, only in-
formation available up to press-time could be in-
cluded. Copyright 1965 by Science \& Mechanics Pub-
lishing Co., o subsidiary of Dovis Publications, Inc.,
505 Park Avenue, New York, New York 10022.
Every effort has been made to ensure accuracy of the
information listed in this publication, but absolute
accuracy is not guaranteed and, of course, only in-
formation available up to press-time could be in-
cluded. Copyright 1965 by Science \& Mechanics Pub-
lishing Co., a subsidiary of Dovis Publications, Inc.,
505 Park Avenue, New York, New York 10022.
Every effort has been made to ensure occuracy of the
information listed in this publication, but absolute
accuracy is not guaranteed and, of course, only in-
formation available up to press-time could be in-
cluded. Copyright 1965 by Science \& Mechanics Pub-
lishing Co., o subsidiary of Dovis Publications, Inc.,
505 Park Avenue, New York, New York 10022.

- K
K. Wave Length W.P. 680-440.9

KNBR 8an Fran., Callf.	50000
WPIN St. Petersburs. Fla,	1000d
WCTT Corbin, Ky.	1000
WCBM Baltimore. Md.	10000
WNAC Boston, Mass.	80000
WDBC Eseanaba, Mich.	10000
KFEO St. Joseph. Mo.	5000
WINR BInghamton. N.Y.	1000
WRVM Rochester. N.Y.	250d
WPTF Ralelith. N.C.	50000
WISR Butler, Pa.	250 d
WAPA San Juan, P.Rico.	10000
WMPS Memphis, Tenn.	10000
KBAT San Antonio, Tex.	50000
KOMW Omak. Wash.	1000d
WCAW Charleston, W.Va,	10000
690-434.5	
WVOK Blimingham, Ala.	50000d
KEOS Fiagstaff. Ariz.	1000
KEVT Tuesen, Ariz.	250d
KBBA Benton. Ark.	250d
KAPI Pueblo. Colo,	250d
WADS Ansonia. Conn.	500d
WAPE Jaeksonville, Fla.	50000
KULA Honolulu. Hawaii	10000
KBLI Blackfoot. Idaho	1000d
KGGF Cofteyville, Kans.	10000
WTIX Now Orleans, Le.	3000
KTCR Minneapolis, Minn.	500d
KSTL St. Louis, Mo.	1000 d
KEYR Terrytown, Nebr.	1000d
KRCO Prineville. Ores	1000d
WXUR Media. Pa.	500d
KUSD Vermilion, S.Dak,	1000d
KHEY El Paso. Tox.	10000
KPET Lamess, Tex.	250
KZEY Tyler, Tex.	1000d
WCYB Bristol. Va.	10000d
WNNT Warsaw, Va.	250d
WELD Flsher. W.Va.	500 d
700-428.3	
WLW Cincinnatl, Ohio	50000
710-422.3	
WKRG Moblie, Ala.	1000
KMPC Los Angeles, Callf.	50000
KBTR Denver, Celo.	5000
WGBS Miami, Fla.	50000
WROM Reme. Ga.	1000 d
KEEL Shreveport, Le.	50000
WHB Kansas City. Mo.	10000
WOR New York, N.Y.	50000
DZRH Manlta, P.I.	10000
WKJB Mavaguez. P.Rieo	1000
WTPR Paris. Tenn.	250d
KGNC Amarilio. Tax,	10000
KURV Edinburg. Tex.	250
KIRO Seattie. Wash.	50000
WDSM Superior. Wit.	5000

Kc. Wave Length		c. Wave Length	(c. Wave Length W.P.\|	ve Length W.P.
740-405.2		KUZZ Bakersfleld, Cellif. $\quad 250 \mathrm{~d}$	KSFA Naeogdoenes, Tex, 1000 d KONO Ban Antonio. Tox, 5000	WGBI 8ersnton. Pa. 1000 WSBA York. Pa. $\mathbf{5 0 0 0}$
		KBRN Brighton. Cole, 500		
KUEQ Pheenix, Ari	000	WLAD Sanbury, Conn. 100	1000d	W
big Avalon, Cal.		W SUZ Palatka, Fla. 1000	10000 d	WICW Johnson City. Tenn. 5000
San Franciseo	500	WJAT Sualnsboro, Gat 10000	10250 d	Wem
olo. Springs, Colo.	$\begin{aligned} & 1000 \\ & 1000 \mathrm{~d} \end{aligned}$	WK2I Casoy. III.	WFOX mivauket, Wis. 250 d	K
Boea Raton. F	1000	WBOK New Orieans, La, 1000 d	870-344.6	KR10 MeAllon, Tex, 5000
M K Blountston,	1000	WCCM Lawrence. Mass.	KIEV Glendale, Calif. 250 d	gatt Lake city, Utah 5000
18 Orlando, Fia-	5000	WVAL Sauk Rapids, minn. 1000 d	KAIM Honolulu, Hawail 5000	WVTR Whito River junction.
ME Boiss, Idah	10	KRE Farmington, mo. ${ }^{\text {MOBM Dillon, Mont. }}$	WWL New Orleans, La, 50000	
EN Oskalopsh.	250	WKON Camdon, N. J. 5000 d	WKAR E. Lansing, Mich. 5000 d	WRNL Rlchmond, Va. 5000
AO Cam	25	KJEM Okla city, okla. 250d	WHCU Thaca. N.Y. ${ }^{\text {a }}$, 000 d	WHYE Roanoke, Va. 1000 d
Bm Carl	1000 d	KPDQ Portland, Ore. 50	WHOA San Juan, P.R.C 5000	KIXI Seattie. Wash. 1000
G8M Huntin	5000 d	WCHA Chambersburg. Pa. $\quad 5000$	KJlm Ft. Worth, Tex. 250	KISN Vancouver, Wash. 1000
BL Morthaad	1000 d	WDSC Dilion, 8.C. 2	1000d	WHSM Hayward.
MG Tulsa, Okia.	50	WOEH Sweotwater, Tenn. 1000 d		
		K000 Oumas, Tex. 250 d		
WIAC San	10000	KBUH Brisham City, Utah 250	WCBS New York, N.Y. 50000	920-325.9
BAW Barnwel	1000 d	W8V8 Crowe, Va. w V 5000		
IR】 Humbolt. Tenn.	250 d	WKEE Huntington, Wi.Va. 5000 d	WRFO Worthington, Ohie 5000d	WWW R Russellville. Ala. 1000d
IG Tullahoma				KARK Little Rock, Ark. 5000
WC		810-370.2		
BCl Williamsburg.	d	K GO San Frameiseo. Callf. 50000	WHNC Henderson, N.C. 1000	KYEC San Luis Obispo, Cal. 1000
750-399.8		W	1000d	KREX Grd. Junction, Cole. 5000
				Eau Gallie, Fla. 1000
WBMO Baltimor	100	KCMO Kansas city Mo. 50000		WGST Aflanta, Ga. 5000
mi Grand	100		WATV Birminsham. Als. 1000 d	WYOH Hazelhurst, Ga. 500 wd
HEB Port		W KBC N. Wilkesboro. N.C. 1000 d	WGOK Mobile. Ala.	WGNU Granite City ${ }^{\text {III. }} 500 \mathrm{~d}$
KSEO Ouran	250	1000 d	W	WMOK Metropolis, 111.1000 d
	50	1000 d		5000
.		WKVM San Juan. P.R. ${ }^{25000}$	KBIF Freane, Calif. 100	000d
M	5000 d	W MTS Murfreesboro, Tenn, 5000 d	KGRB Wost Covina, Cal. 25	WBOX Bogalush. La. 1000 d
760-394.5			WJWL Georgetown, Oel. 5000 d	KTOC Jonasboro. La. 1000 d
			WSWN Belle Glade. Fia. 1000 d	WPTX Lexington Pk.t Md. 500d
MB San Oledo.		WAIT Chicago, III. 5000d	WMOP Ocala, Fla.	WMPL Haneock. Mich. 1000 d
		d	A Caihoun, Ga.	KDHL Faribault, Minn. 1000
	50	W0SU Columbus. Ohio 5000d	WCRY Maedn. Ga. 250 d	KWAD Wa
WCPS Tarboro, N.C.	5	WFAA Dallas, Tex. 5000	WEAS Savanna	KRAm Las Vegas, Nev. 1000
WORA mayaguez. P.R.		WBAP Ft. Worth. Tex. 50000		KOLO Reno. Nev. N 100
770-3			10	KQEO Albuqu
			WLSI Pikeville, KY. 500	WKRT Cortland. N.Y. 1000
	50	KIKI Honolulu, Hawall 250	KREH Oakdale, La. 250 d	5000d
	100		WCME Brunswiek, Ma	Lake Placld, N.Y. 1000
Albuguer	50	00		Burlington, N.C. 5000
York	50000		WATC Gayl	Col
Seat	1000	KBOA Kennett, Wo. $\quad 1000$	KTIS Minneapolis. minn,	KGAL Lebanon, Oreg. 1000
780-384.4		840-356.9	olum	WTNO Orangeburg, S.C. 1000 d
BBM	50.00	WTUF Moblle, Ala. 100	WOTW Nashau, N.H. 1000 d	KEZU Rapid City, S. Dak. 1000d
AG Norfo	1000 d	WRYM Now Britalin. Conn, 1000 d	WBRV Boonvilio, N.Y, loo0d	WLIV Livingston, Tenn. 1000 d
KB Dunn. N.C.	1000 d	WHAS Loulsville. Ky. 50000		KELP EI Paso, Tex. 1000
BO Farest City, N.C.	$\begin{aligned} & 1000 \mathrm{~d} \\ & 250 \mathrm{~d} \end{aligned}$	WVPO Stroudsburg. Pa 250d		00
Stliwater, Okia.				KTLW Texas city, Tex. 1000 d
WAVA Arinniton,	100	850-352.7	Illamston, N.C. 100	
790-379.5		wYoE BI	KFNW Fargo. N.Oa	WMMN Fairmont. W.V. ${ }^{\text {W }}$. 5000
WTUG Tusealo			WCN8 Can	Y Milwauk
KCAM Glennalion. Alask	5000	O enver, Colo. Flar $\quad \begin{array}{r}50000 \\ 5000\end{array}$	WFPA clearfild Pa. 1000d	
KCEE Tueson, Ariz.	5000	UF Gainesville, Fla. ${ }^{\text {a }}$	WFLN Philadelphia, Pa. 1000 d	930-322.4
K08Y Toxarkana,	100	KIMO Hilo. Hawali ${ }^{\text {dil }} 1000$	WKXV Knoxvilie. Tenn. 1000 d	
KDAN Eureka.	500	H Boston, Mass. 50000	WCOR Lebanon. Tenn. 500d	KN Katchikan. Alasta 1000
WLBE Leesburg. F	5000	WKBZ Muskeson, Mich. 1000	KALT Atlanta. Tex. 1000	KAPR Douglas, Ariz. 1000 d
WFUN mlami Beach, Fia.	5000	10000	KFLO Conrodada. Tex. 250d	KFGT Flagstafi. Ariz. 1000 d
QXI Atlanta	5000	eveland. Ofile $\quad 10000$	KCLW Hamilton, Tex. 250 d	KHJ Los Angeles, Calif. 5000
YNR Brunswick.		W JAC Johnstown. Pa. 10000	W00Y Bassett, Vm. 500 d	KNGL Para
GRA Cairo		WEEU Reading Pa. 1000	WAFC Staunton, Va, 1000 d	WKSB Milford, Oel. 500 d
	1000 d	WABA Aquadilla. P.R. 500	KUEN Wenatehee Wash. 250 d	WHAN Halnes city, Fla. 1000
RMS Beardstown. 11	500 d	WRAP Norfolk, Va $\quad 5000$	WATK Antsgo, Wis. 2500	WJAX Jatkson
xx Colby		Tatoma, Washo 1000		WKXY Saraso
KY Louls			910-329.5	WMGR Bainbridat, Ga.
Ru	1000 d		WOVC Dadoville, Ala. 500d	KSE ${ }^{\text {P Pocatello. }}$ Ida
81	5000	WHRT Hartselle. Ala $\quad 250$	KPHO Phoenix, Ariz. 5000	WTAO Qui
	$1000 d$ 5000	WAMI ODD, Ala. ${ }^{\text {Kin }}$ (1000d	KLCN Blytheville, Ark. $\quad 5000 \mathrm{~d}$	WKCT Bowling Green. Ky. 1000
WNY Water	1000	KOSE Oseada. Ark. $\quad 1000 \mathrm{~d}$	0 EI Cajon. Calif. 1000	W FMD Frederick, Ma. 500
Wells	1000 d	KWRF Warren. Ark. 250 d	KEW B Oakland. Callf. 5000	WREB Holyoke. Mass.
NC Thomai	10	KTRB Modesto. Calif. 10000	KOXR Oxnard, Cal. 5000	WBCK Battio Crook, mieh.
G0 Farso.	5000	WOWW Naugatuek. Conn. 250d	KPOF nr. Oenver, Coio. 5000	KKIN Aitkin,
WAEB	1000	WAZE Clearwater, Fla. 500d	WRCH Now Britain. Conn. 5000	Jackion,
WPEB Altentown.		WKKO Coeoa, Fla. 10000	WPLA Plant City, Fia. 5000	Kalispell, Mont
WPIC Sharon, Pa.	$1000 d$ 5000	WERD Atianta, Ga. 1000	WGAF Valdosta, Ga.	
WEAN Providenes,	10000	WOMG Oouglas, Ga. 5000	N Galdwall. Ida. 11.500 d	WSOC Cha
ETB Johnson City.	1000d		WSUI lowa City, lowa 5000	WITN Washington. N.C. 500
MC Memphls.	S	KOAM Pittsburs. Kans. 10000	KıSI Salina, Kan. 500 d	WW NH Rochester. N.H. 5000
THT Housto	5000	WSON Henderson. Ky. 500 d	WLCS Baton Rouse, La 1000	WPAT Paterson, N.J. 500
FYO Lubbo	1000 d	WAYE Oundalk. Md. 1000 d	WABI Bansor. Maina 5000	WBEN Butialo, N.Y. 500
UTA Blandin	1000 d	WSBS Gt. Barrington. Mass. 250d	WFOF Flint. Mich. 5000	WEOL Elyria. Ohlo Ohi 100
SIG Mount	1000 d	KNUI New UIm. Minn. 1000 d	WCOC maridian. Miss. 5000	WKY Oklahoma City, Okia. 500
WTAR Noriolk. Va.	5000	WMAG Forest. Miss. 500 d	KOYN Billings. Mont, 1000 d	KAGI Grants Pass, Oral.
Be		KAR8 Belon, $\mathrm{N} . \mathrm{Max}$, 250d	KY8S Missoula, Mont. 1000 d	WCNR Bloomsturg, Pa. 1000
8	5000	WFMO Fairmont, N.C. 1000 d	KBIM Roswell. N. M. 5000	K8DN Abordeon, S.O, 100
s.	500	WSTH Taylorsvilie. N. C. 250 d	WRKL New Yerk, N. Y, 1000d	WSEV Seviarville, Tonn. 5000
		KSHA Medford, Orog. 1000 d	WLAS Jeaksonville, N.C. 5000d	KDET Confer, Tox
800-374.8		1000d	KC/B Minot. N.Oak. 1000	KITE San Antonlo. Tex. 50
0	100	WTEL Philadelphia. Pa. 10000 d	WBRJ Marietta. O. $\quad 5000$	KENY Bellingham-Fer
+10	100	WLBG Laurens, S.C. 100	WPFB Middatawn, Ohl 1000	
N		WIVK Knoxvilis, Tann. 10	1000	
GH		N Hereford, Tex,	000	LBL Auburndale, Wit

orpllton. Art

MBMITE'S

Ke. Wave Length 940-319.0
KHOS Tucson, Ariz. WINE Brooktield, Conn. WINZ Mlami, Fia. WMAZ macon, Ga KAHU Waipahu, Hawali KIOA Des vernon, lli. WCND Shelbyville, Ky WYLD New Orleans, WJOR South Haven, Mich. WCPC Houston, Miss. KSWM Aurora. Mo. KVSH Valentine, Nebr WFNC Fayetteville, N.C. WCND Shelbyville, N.Y. WCIT Lima. Ohlo KWRC W oodburn, Ore. WESA Charlerol. Pa. WIPR San Juan, P.R KIXZ Amarlilo. Tex
KTON Belton, Tex.
KATG Texarnina. Tex
CQOT Yakima. Wash.
WFAW Ft. At ininon, Wis.

$950-315.6$

WRMA Montoomery. Ala. (IBH Seward, Alaska KXJk Forrest City. Ark. KFSA Ft. Smith, Ark. KAHI Auburn. Calif. KIMN Denver. Colo.
WLOF Orlando. Fla. WLOF Oriando. Fla. VGOV Valdosta. Ga. KBOI Boise. Idaho KLER Orofino, Idaho WAAF Chicago. ItI. WXLW Indlanapolis. Ind. KOEL Oelwein, Ia. KJRG Newton, Kans,
WBVL Barbourville, Ky WBVL Barbourville, Ky.
WAGM Presque Isle. Malne WXLN Potomac. Cabin John WORL Boston. Mass. WWJ Detroit. Mich. KRSI St. Louis Park. Minn. WBKH Hattlesburg, Miss, WHVW Hyde Park. N. Y. WBBF Rochester. N.Y. WIBX Utica, N. Y. WPET Greensboro, N.C. KYES Roseburg, Oreg
WNCC Barnesbero, Pa WNCC Barnesboro, Pa, WBER Moncks Corner, S. C WSPA Spartanburg. S.C. KWAT Watertown, S.D. KOSX Denison. Shernian, Te KSEL Houston. Tex. WXGI RIchmond, \vee a KHER Kemmerer, Wash KJR Seattle. Wash. WISAZ Charleston. W.Va. WKTS Sheboygan. Wis. KMER, Kommerer, wyo

960-312.3

WBRC	Birmingham. Ala.	5000
WM0Z	Mobile, Ala.	1000
K00L	Phoenix Ariz.	5000
KAVR	Apple Valley, Callf.	5000 d
KNEZ	Lompoc. Callf,	500
KABL	Oakland, Callf.	5000
WELI	New Haven, Conn.	5000
WGRO	Lake City, Fla.	500 d
WJCM	Sebring, Fla.	1000 d
WJAZ	Albany, Ga.	5000
WRFC	Athens, Ga.	5000
KSRA	Salmon, Idaho	1000 d
WDLM	E. Aloline, Ill.	1000 d
WSBT	South Bend, Ind.	5000
KMA	Shenandoah. lowa	5000
WPRT	Prestonsburg, Ky.	5000 d
KROF	Altheville, La.	1000d
W 80C	Salisbury, Mid.	5000
WFGMt	Fitehburg, Mass.	1000
WHAK	Rogers City. Mieh.	5000d
KLTF	Little Falls, Minn.	500d
WABG	Greenwood, Miss.	1000

Ke. Wave Length
WEWO Laurinburg. N.C.
WWOR Murfreesborg, N. C. WWDR Murfreesbe KW11 Portland, Ore WEEP Pittsburgh. Pa. KRLD Dallas. Tex.
1090-275.1
KAAY Little Rock. Ark. WCRA Emngham. III KHAC Henolulu. Hawail KNWS Waterloo. Iowa WBAL Baltimore. Md. WILD Beston. Mass. WMUS Muskegon. Mieh. WEAB Garden City. Mich KING Seattie. Wash.
1100-272.6
KFAX San Franciseo, Callf. 50000 WLBB Carrollten. Ga. \quad 250d WHLI Hempstead. N.Y. $\quad 10000 \mathrm{~d}$
KYW Cleveland Ohio
50000 KYW Cleverand, Ohio
WGPA Bethlehem. Pa.
1110-270.1

KCLE Cleburns.
$1130-265.3$
KRDU Dinuba, Calif. $\quad 1000$
KSOO San Diego. Callf. $\quad 5000$
KLE Kailua, Hawail 5000
Detrolt. Mich. 5000
WDGY Minneapolis. Minn. 50000
WNEW New York. N.Y.
50000
$1140-263.0$
KRAK Saeramento, Callf.
50000
WMIE Miami, FIa,
GSIV Pekin. III
5000 d
KITA Gkiahoma City, Okla. 1000 d
KSOO Sioux Falls. S.Dak. 10000
KDRC Minert Welis. Tex. 250d
WRVA Richmond. Va.

1150—260.7

WBCA Bay Minette. Ala. 1000d WGEA Geneva, Ala. WJRO Tuscaloosa. Ala. KXLR Mo Littl Rock, Art 1000 KRKD Los Anceles, Calif. 5000 KJAX Santa Rose, Calif. KGMC Englewoed. Colo. VCNX Middletown, Conn WDEL Wllmington. Del. 5000 WNDB Daytona Beh.. Fla. 1000 WTMP Tampa, Fla. WIEM Yaldostaley. Ga. 1000d WGGH Marion. III. 5000 d WJRL Rockford, Iil.
KBIA Burlington. Ia.
KWKY Des Moines. Iowa
KSAL Salina, Kans.
WMST Mt. Sterling. Ky.
WLOC Mumfordville. Ky.
WJBO Baton Rouge. La, 5000
WHMC Gaithersburg. Md. 1000
WCEN Mt. Pleasant. Mich. 5000
KASM Albany, Minn. \quad 5000
KRMS Osage Beach. Mo. 1000 d
KDEF Albuquerque. N.Mex. 1000
WRUN Utiea, N.Y. 5000
WBAG Burlington, N.C. 1000 d WCUE Cuyahoan Falls. Ohie 1000 d WIMA Lima, Dhio
$\begin{array}{ll}\text { KNEO MEALester, Okla. } & 1000 \\ \text { KAGO Klamath Falis, Oreg. } & 5000\end{array}$
0000
50000

50000
250d
5000
50000
1000 d
1000d
250d
50000

$$
\mathbf{K}
$$

WABH Deorfild, Va. WAXX Chippewa Falls. Wis. 5000 d WisN Milwauket. Wis. 5000

$1160-258.5$

WJJO Chleago. III.
KSL Salt Lake City. Utah 50000
1170-256.3
WCDY Mentcomery. Ala.
KCBO San Diago. Calif KLOK San Josa. Calif. KOHO Honolulu. Hawal WLBH Mattoon. III.
KSTT Davenport. Iow KYOD Tulsa. OKla. WLEO Ponee, P.R. WWVA Wheeling. W.Va.

1180-254.1

WLDS Jacksonville, III. 1190-252.0 $\begin{array}{lr}\text { KROS Tolloson. Ariz. } & 250 \\ \text { KEZY Anaheim. Callif. } & 1000\end{array}$ KNBA Valleje, Calif. WOWO Ft. Wayne, Ind. WKOX Fram'gham Mass WLIB New York. N. Y. KEX Portland. Dreg. KLIF Dallas. Tex. 1200-249.9 wDAI San Antonio. Tex.

1210-247.8

KZDO Honelulu. Hawali WCNT Cantralia, III. WKNX Satinaw. Mich. WADE Wadesbero, N
WAVI Dayton, Ohio WCAU Philadelphia. Pa.

1220-245.8

WAOY Birmingham. Ala. WABF Falrhope, Ala. KLIP Fowler. Calif. KIBE Palo Alto Gal. KKAR Pomona, Calli. KFSC Denver. Colo. WOEE Hamdan, Conn. waty Arlington, Fla. WMET Miami. FIa. W8AF Sarasota. Fia, WCLB Camilla. GB. W8FT Thomaston. Ga. WKPO LaSalle. III. WSLM Salom. Ind. KJAN Atlantie. lowa KOUR Independence, Iowa WFKN Frankiin. Ky. KBCL Shrovapert, Ly. WLBI Damham Springs. La. 250d WSME Sanford, Maine WAYN Stillwater, Minn. WMDC Hazlehurt. Miss. KBHM Branson. Md. KBHM Branson. Md.
K KBM Kranson. Mo. WGNY Newburgh. N.Y. WKOMT K. Syracuse. N.Y. WKMV Rings Mtn.. N.C WREV Reidsvile, N.C. KENC Ohitevilis, N.C WGAR Cleveland. Ohio WERT Van Wert, Ohlo KGYN Guymon. OkIa. KBLY Goldbeach. Oren
W.P.

5000 d
1000 d 1000 d
5000
10004
$1000 d$
5000
1000
1000d 1000d 1000d
$1000 d$
$500 d$
500d
1000d
5000 d
5000
000d
0 KRIZ Pheemix. Ariz. Kato 8afford, Ariz.
KINO Winsiow, Ariz KCON Conway. Ark. KCON Conway, Ark. KBTM Jonesboro, Ark. KGEE Bakersideid, Calif. KWTC Barstow. Callf KIBS Bishop. Calif KXD EI Centro. Calli. KGFI Los Angeles. Calif KPRL Pase Robles. Calif. KRDG Redding. Callif. KEXO Grand Junetion. Colo. KBRR Loadvilile. Colo. KGEK Starline. Colo.

 WGGG Gainesvilie. Flan. WONN Lakeland, FlaWMAF Madison, Fla

50000
$1000 d$
50000

1000

250d
5000d
$250 d$
1000 d
1000 d
1000 d
1000 d
1000 d
$250 d$
1000 d
1000d
1000 d
500 d
250d
$1000 d$
1000 d
1000 d
5000 d
250d
$250 d$
$250 d$ 250 d 1000 d 5000d

250d

000d

1000 d

0000

0000d

1000d

$1000 d$

5000d

$1000 d$

MMATES

ட(0)

Kc. Wave Length W.P.
KFLI Mountaln Home, Idaho 250 WCRW Chicago, Id ilito WEDC Chicago. II WSBC Chlcago, III. WEBQ Harrisburg, 111 . WTAX Springflold, WHBU Anderson, Ind. KWEC Decorah, lowa KWLC Decorah, lowa
KBIZ Ottumwa, lowa KICD Spencer, lowa KIUL Gardon City, Kans. KAKE Wichita, Kans WINN Louisville, Ky. WFTM Maysville, Ky. WSFC Somersct, Ky KASD Minden, L KANE New I beria, La. WGOU Lewiston, Maine WMKR Millinocket. Me WJEJ Hagerstown, Md. WHAD Greenfleld, Mass.
WOCB W. Yarmouth, Mas WOCB W. Yarmouth, WCBY Cheboypan, Mich WJPD Ishpeming, Mich. WJim Lansing, Mich. WMFG Hibbing, MInn. KPRM Park Raplds, Minn WJON St. Cloud, Minn. WMPA Aberdeen, MIss. WGRM Greenwood. Mlss. WGCM Gulfport. Miss. WMIS Natchez, Miss,
KFMO Flat River, Mo. KFMOS Jefferson City, Mo. KODE Joplin, MO,
KNEM Nevada, Mo. KBMY Billings, Mont, KBLL Glasqow, Mont. Lincoln. Nebr. KODY North Platte. Nebr. WFTN Frankiln, WFTN Frankin, N,H, KAVE Carisbad, N. Mex WGBB Freebort. Nex. WGVA Geneva, N. Y. WITM Jamestown, N.Y WVOS Liberty, N. WNBZ Saranac Lako, N. Y. WATN Whenectady. N. Y. WPNF Brovard, N.C.
WCNC Elizabeth City, N.C WRAL Rateigh. N.C. WRAL Rateigh. N.C. \quad KDL WBBW Youngstown, Ohio KVSO Ardmore. Okla K BEK Ardmore. Okla. KBEL Idabel. Okla. KOKL Okmulgee, Okla KTIX Pendiston Ores (PRB Redmond, Oree CQEN Roseburg, Ore WRTA Altoona, P a WHUM Reading Pa. WBAX Withes-Barro. Pa. WALO Humacao. P.R. WWON Woonsocket R. WKON Newberry. S.C. WBE! Elizabethton Tenn WEKR F yetteville. Tenn WBIR Knoxville. Tenn. W KDA Nashvilie, Tenn. WENK Union City. Tenn. KVLF Alpine. Tox KEAN Brownwood, T KORA Bryan, Tex. KOCA Kilgore. Tex. KSOX Raymondvllie. Tex. KXOX Sweetwater, T WSKI Montpeller. Vt. WSSV Petersburg, Va WROV Roanoke. Va WTON Staunton, Va KXLE Ellensburgh. Wash. KGY Olympia, Wash.
 000 d 1000
1000 250
1000
1000
250 250 1000 1000
250

Ke. Wave Length WKOY Bluefield, W.Va, WTIP Charleston, W.Va WDNE Elkins, w.Va, WIBU Poynelte, Wis. WOBT Rhinelander, Wis. WJMC Rice Lake, Wis. KEVA Evanston, Wyo KASL Newcastle. Wyo KTHE Thermopoils, w

1250—239.9

WZOB Ft. Payne, Ala
WETU Wetumpka, Ala WETU Wetumpka, Ala.
KAKA Wlckenburg, Ariz. KFAY Fayetteville, Ark. KALO Little Rock. Ar KTMS Santa Barbara. Callif
KDHI Twenty.

KMSL Ukiah, Callf. WNER Given, Colo. WRIM Live Oak, Fla WRIM Pahokee, Fla, WDAE Tampa, Fla. WYTH Madison, Ga, WIZZ Streator, ill. WGL Fi. Wayne, Ind. KRAY Princeton, ind. KFKU Lawronce, Kans. WREN Topeka, kans. WNVL Nicholasvilie, Ky WLCK Scottsville, Ky. WGUY Bangor, Haine WARE Ware, Mass. WWBC Bay City, Mich KOTE Fergus Falls, Minn WHNY McComb, Miss. KBTC Houston, Mo WKBR Manchester, N. WMTR Morristown, N.J. WFAG Farmvillo, N.C WKDX Hamlet, N. C. WBRM Marion, N.C. WCHO Washington Court WLEM Emporium, Pa.
WPEL Montrose, Pa. WRYT Pittsburgh. P WNOW York. Pa WTMA Charleston WCKM Charleston. S.C. WKBL Covington. Tenn. WNTT Tazewell, Ten KFTV Paris, Tex. KPAC Port Arthur, Tex KUKA San Antonio. Tex KTFO Seminole. Tox KANN Ooden. Útah KVEL Vornal, Utah WDVA Danville, Va. WEER Warrenton. V KWSC Pullman. Wash. KTW Seattle, wash

1260-238.0

WCRT BIrmingham, Ala, KPIN Casa Grande, Ariz KCCB Corning. Ark.
l000d KYA San Fernando. Calif. SNO An Francisco, Calif. WMMM Westport. Con WNRK Newark, Co WWDC Washington. WFTW Fort watton, D.C. WAME Miaml Fla Florida WWPF Palatka. Fla. WHAB Baxley, Ga. WTBK Blakely, Ga, KTEE Idaho Falls Ga. KWEI Weiser Ida. WIBV Bellovilie. Ill. 000 WFBM Indianapolis, Ind 1000 KFGQ Boone. Lowa 1000 KWHK Hutchinson. 1000 WXOK Baton Rouge. Kans. 1000 WEZE Boston. Mass. 250 WALE Boston. Mass, 1000 WJBL Holland, Mich. 1000 KROX Crookstion, Minn. 000 KDUZ Hutchinson. Minn 1000 W GVM Greenville, Miss. 000 WNSL Laurel, Miss. 000 WCSA Ripley. Miss 1000 KGBX Springfield, Ho. 1000 KIMB KImball, Nebr.

W.P.	Ke. Wave Length	W.P.		ave	W.P
00		5000			
1000	KVSF Santa	1000			
$\begin{array}{r} 1000 \\ 1000 \mathrm{~d} \end{array}$	WBNR Beacon, N.Y WNDR Syracuse.	$1000 d$ 5000		-	5000
1000d	WGWR Asheboro.	5000 d			
1000	WCD1 Edento	1000d	KCOB	Newton, low	
1000	WDOK Clevela	5000			
1000	WNXT Por	000	w	C	
1000				Oak	500 d
1250		1000		Filtehbu	00
10	KMCM McMinnulie, Oreg	100			5000 d
10	WWYN Erle	5000		Minneapolls.	5000
	WISD Ponce, P.R	5000d 1000	$K V$	Moorhe	1000
	WMUU Gree	5000d			
1000d	WJOT Lake	1000 d	K	Brok	
5000d	KWYR Winn	5000d			5000
500 d	WNOO Chat	1000 d		Farmin	
1000 d	WMCH Chureh Hili.	1000 d	WADO	New	0
1000	WDKN Dickson, T	1000d			
500d	WCLC Jamestown, Tenn	1000 d			1000
	K	$\xrightarrow{1000 \mathrm{~d}} \mathrm{500d}$		Sotlan N	
	K	100			1000
500d	KTUE Tulia.	1000d		Poteau, Ok	00
1000d	KTAE Taylor.	1000d		E	5000
1000	WCHV Charlottesville.	500		Berwic	000d
500	WJJChristians			N	
5000	ses	1000d	W	New	
1000 d	W Gra	500			
1000					-
500 d	WEKZ Monroe.	1000 d 1000 d	WBA	Stur	5000 d 1000 d
1000 d	KPOW Powell. Wyo.	5000	WMC	Columb	
500d			W 0	Dayton.	1000d
	1270-23			Abi	
50			KWHI	Bre	d
	Guntersv			Lon	
500 d					
5000	KBYR Anchorage,	1000		Pearsali. Tex.	
1000 1000 d	KDJI Holbrook.	1000d		Saltavista, Va.	
100	KADL Pine BI	5000 d			1000 d
1000 d	am Des	500 d	K	hel	1000 d
5000	OG Naples,	5000 d		nok	5000d
500 d	WH iY Oriando.	5000 d			-
		5000	WVAR	RI	
50	WKRW Cartersvilio,	500 d		N	
	WGBA Colum	5000 d			
500 d 0000	wJJC Comme	1000d			
1000 d	KNDI Honol	5000			
10004	KTFI Twin Fall	0			
	harl	1000d			
	BF Rock		WSt	Shef	
1000d	WGMR Eikh	5000		Syla	d
50	WWCA Gar			Flagstaff, Ari	1000
	RX Madison, Ind	1000 d			
5000 d	CB Literal.	1000	KDMS	El Dorado, Ar	5000d
	WAIN Colum	1000a	KUOA	Siloam Spros.	5000d
500 d	WFUL Fulton,	$1000 d$	KHSL	Chico. Calif.	5000
$1000 d$ $500 d$	KVCL Winnfeld.	1000 d	KPER	Giliroy	5000d
50	WSPR Sprinpfield	5000	KMEN San Bernardinof Caliornia 5000		
	wXYZ Detro	5000			
5000	KWEB Roch	5000	KACL	Santa Barbara, Cal.	500
	WVOM loka, Miss.	1000 d		Hartford, Conn.	
100	WLSM Louisville.			Wilmington,	1000d
100	KUSN St. Joseph, Mo.	1000 d	wScM	Paila.	5000
	KBUB Sparks.	1000 d	WSCM Panama City Beach. Florida 500d		
1000 d	WTSN Dover	5000			
$1000 d$	KRAC Alamo	000d			
5000	WHAC Alamogordo. N.	1000d			1000d
	WOLA Walton, N.Y. N.Y.	5000d		-	5000
				cat	10000
	WMPM Smi	5000 d			
	WROM Smi			Pratt. Kans	00
	WILE Cambridge. Ohio	1000d	WCB	Benton, Ky.	d
5000d	KWPR Claremore, Okla	,			000d
10000	Kajo Grants P	5000	WHGR Houghton Lake. Mich. 5000		
	WLBR Lebano	5000	WNIL	Niles, Mich	500 d
$500 d$	WBHC Hampton, S.C	1000d	$\begin{array}{ll}\text { WOIB Saline, Mich. } & \text { 500d } \\ \text { KBMD Benson, MInn. } & 500 d\end{array}$		
5000	KNWC Sioux Falls, S.	1000			
50	WLIK Newport. Tonn.	5000 d	WBLE	Batesville, Miss.	000d
500	K10X Bay Cit	1000	KALM Thayer, Mo. $\quad 1000 \mathrm{~d}$		
1000d	KHEM Bio Spring	1000 d			
	KEPS Eagio	1000d	$\begin{array}{lll}\text { KDIL Omaha, } & \text { Nebr. } & 5000 \\ \text { WKNE Keene, } & \text { N.H. } & 5000\end{array}$		
5000	KFJZ Fort Worth, Tex.	5000			
	WTio Newport News.	1000 d	KSRC	Socorro, N.M	1000 d
1n00d	WHEO Stuart,	1000d	WGLI Babylon, N. Y , 5000		
	KCVL Colvillo.	1000d	WNBFWHKY Highamton.W.Y.W		
100	KBAM Longvie	5000			
5000 d	WKYR Keys	5000	WEYE Sanford, N.C.WOMP BellaireOhioO		
1000	WRJC Maust	500			
5000	WWJC Superior, Wis.				
5000 d	WWJC Superior. Wis.	5000	WHIO Dayten. Onior ${ }^{\text {KUMA Pendleton. Oreg. }}$ K000		
1000 d					
5000d	1280-234.2				
5000			WICE Providence. R.I. 5000		
1000d	WPID Pledmont, Ala.	1000d	$\begin{array}{lll}\text { WFIG Sumter, S.C. } & \\ \text { WATO } \\ \text { Oak Ridge, Tonn. } & & 1000 \\ & 5000\end{array}$		
1000	WNPT Tuscaloosa. Ala	5000			
1000d	KHEP Phoenix. Ariz.	1000 d	KBLT Big Lake. Tex. 1000 d		
5000	K NBY Newport. Ark	1000d	KIVY Crockett, Tex. 500 d		
	KCJH Arroyo Grande. Cal.	1000			
5000	KFOX Lond Beach. Callf.	1000	KTRN Wichita Falls. Tex. 5000		
1000	KCJH San Luis Obispo, Cal.	500 d	WPVA Colonial Hgts.. Va. 5000 d		
1000d	KJOY Stockton. Callf.	1000	WAGE Leesburg. Va,WKWS Roeky Mount,WVOwK		
5000d	KTLN Denver. Colo.	5000			
5000d	WSUX Seaford. Del.	1000 d	WAPY Port Angeles, Wash. 10000		
	WDSP DeFuniak Springs.				
$\begin{aligned} & 5000 \\ & 000 \mathrm{~d} \end{aligned}$	$\begin{aligned} & \text { Florida } 5 \\ & \text { le, Fla. } \\ & 5 \end{aligned}$	$\begin{aligned} & 5000 \mathrm{~d} \\ & 5000 \mathrm{~d} \end{aligned}$	\ddot{w}	S	$10 \mathrm{~d}$

Kc. Wave Length W.P.|Kc. Wave Lergth W.P.|Kc. Wave Length W.P.|Kc. Wave Length W.P.

1300-230.6
WBSA Boaz, Ala. WEZQ WInfleld. Ala KWCB Searey, Ark. KROP Brawley, Calif. KYOP Brawley, Calif.
KWKW Presno, Calif. KVOR Colo. Spros., Colo. WAVZ New Haven. Conn. WAVZ New Haven. Cocoa Beach, Fla WFFG Marathon, Fi
WSOL Tampa, FIa. WMTM Moultrie, Ga. WNEA Newman, Ga WIMO Winder, Ga. KOZE Lewiston. Idaho WTAQ La Grange, 111. WFRX W. Franktort, ind. WAAC Terre Haute. Ind WGLG Lason City. WIBR Baton Rouge. L WIBR Baton Rouge.
KANB Shreveport. La.
WFBR Baltimore. Md. WFBR Baltimore. Mu
WJDA Quincy, Mass. WOOD Grand Rapids. Mich.

1000 d 1000 d

 500d W00d WGSA Ephrata, Pa. 000d WDKE Warren, Pa. 1000 WDOD Chattanooga, Tenn. 5000 WDXI Jackson. Tenn, 5000 WBNT Oneida. Tenn. 000 KZIP Amarillo. Tex. W WRR Dallas. Tex. KUBO San Antonio, Tex. WEEL Falrfax. Va. 5000 d WGH Newport Nows, Va. KARY Prosser. Wash. wIBA Madison. Wis. 100045000 5000
5000 WRBC Jackson, Miss.
KMMD Marshall, Mo.

1320-227.1

 WAGF Dothan, Ala.WENN Birmingham, Ala. KENN Yuma. Arlz. KWHN Fort Smith. Ark.
KRLW Walnut Ridge, Ark. KRLW Walnut Ridge, Ar
KHSJ Hemet. Calit. KLAN Lemoore, Calif.
KUDE Oceanside, Calif. KCRA Sacramento, Calli. KAVI Rocky Ford, Colo.
 KMMD Marshall, Mo. KBTL Carson City, Nev. WPAN Plymouth. N WOSC Futton. N.Y. WEEE Rensselaer, N.Y. WEEE Rensselaer, N.Y
WRRC Suring Valtey. WGOL Goldshoro. N.C. WLNC Laurinburg. N.C WSYD Mi, Alry, N.C. WERE Cloveland. KOME Tulsa. Okla. KOOV Modford. Oreg. WWCH Clarion. Pa. WTHT Hazieton. Pa. WLOW Aiken, S.C WKSC Kershaw, S.C. KOLY Mobridge. S.Dak WMTN Morristown. Tenn

KVET Austin. Tex. B Brownfleld, Te KKNS Laredo. Tox. KSTU Logan, Utah KOL Seattis. Wash. wCLG Mergantown. W.va 5000

1310-228.9 WHEP Foley. Ala. WJAM Marion. Ala. KBUZ Mesa, Arlz.
KBOK Malvern. Ark.
 WATR Waterbury, Conn.
WGMA Hollywood. Fla. WGMA Hollywood. Fla.
WZOK Jacksonville, Fla
WAMR venles, Fla. WAMR venleo, Fla. WHIE Griffir, Ga.
1000 d 5000d

KOIA Oakland, Callf. KTKR Taft, Calif. KFKA Greolay. Colo,
WICH Norwich. Conn. wOOO Deland, Fla.
$\begin{aligned} 000 d & \text { WBRT Bardstow, KY. } \\ 500 & \text { WCR }\end{aligned}$
500 WCLU Covington, Ky. 5000 WNGO Mayfield. KY 5000 KHAL Homer, La
500 WICO Sallsbury. 5000 WARA Attieboro. Mass. s000d WILS Lansing, Mich. 1000 d WDMJ Marquette. Mich 500 d WRJW Picayune. Miss 1000 d KXLW Clayion, Mo. KOLT Seottsbluff. Nebr
KRDD ROswell N KRDD Roswell. N.M.
WWHG Hornell. N.Y. WWHG Hornell. N
WQSR Solvay, N. WAGY Forest Clity, N.C. WCOG Greenshoro, N.C. WKRK Murphy N.C.
WEEW Washington. WEEW Washington. KHRT Minot, N. D WHOK Lancaster. Ohio
KWOE CIInton, Okla. KWOE CIInton, Ok WKAP Allentown, Pa. WGET Gettysburg, Pa.
WJAS PIttsburgh, Pa.

$$
w
$$

1000 d
 $1000 d$ $1000 d$

1000 d 1000 d

$000 d$
5000
WNHC Now Haven, Conn. WUUK Washington, D.
WSLC Clermont

WJMB Brookhaven, Miss.
品

1000

$$
\begin{aligned}
& \text { w } \\
& k 5 \\
& k \\
& w \\
& w \\
& k \\
& k \\
& k
\end{aligned}
$$LID Poplar Bluft, Mo.

SGM St. Genevieve. Mo.
SMO Salem, Mo.$1000 d$
$1000 d$
1000WHOT Camplell. Ohio
WFIN Findiay. Ohio1000 KSMO Salem, MO.WKOV Wellston. Ohlo
WELW Willoughby. 0.
KPOJ Portland. Oreg.RKK Sedalia, Mo.Mo.RK Livingston. Mont.
TL MIIes City, Mont.
TE Missoula. Mont.1000
WJOI Florence. AlaICU Eellefonte, Pa.
LAT Conway, S. C.
FBC Groenville, S.C.
AEW Crossville. Tenn.WFBC Greenville, S.C.
WAEW Crossville, Tenn.
WTPO Dyersburg Tenn.WAEW Crossville, Tenn
WTRO Dyersburg. Tenn.KD Sidney. Nebr
RK Las.
KET R
CR
WID
KR
RI
KIL
MB
EN
WKS
US
M
A
I
WJ
WT
WOXF
WOWFEB Sylacauga, Ala.$\begin{array}{llr} & \text { WOOW Greenvile, N.C. } & 1000 \\ 1000 & \text { WGNI Wilmington. N.C. } & 100 \\ 1000 & \text { WAIR WInston-Salem. N.C. } & 250 \\ 250 & \text { KGPC Gratton, N.Dak. } & 1000 \\ 1000 & \text { WNCO Ashland. O. } & 1000 \\ & \text { WOUB Altions, Ohio } & 250\end{array}$N.C.KSWA Graham, Tex.
KINE Kingsvili, Tex.
KVKM Monahans, Tox.KVKM Monahans, Tox.
KDOK Tyler, Tex.Las Vegas.
Reno. Nev.
Hanover.
\qquad
VOK Tyler, Tex.
WRTM Danvile,
Q
Allanti
WRAA Luray, Va.
WOLD Marion. Va.
WOLD Marion. Va.
WESR Tasley. Va.
KFKF Bellevue. WasAtlantic. N.M. N.J. 10000
Aztec, M.
Ruidoso.
Taos, N.
Silver Ciy.N.M.. Me000
250
1000
1000
1000
250
250
1000
1000
1000
1000
1000
1000
1000
1000
250
1000
100
KIBH
KIKO KNOG Nogales, Ariz.Alver C
Alover
GloverY. N. M.
N.N. Me
. N.SN Jamestown. N.
SJ Locknort. N. Y.KNOG Nogales, Ar
KPGE Page, Ariz$1000 d$
KFKF Bellevue. Wash.
KCFA Spokane; Wash.
WETZ New Martinsvile,w.va.WHBL Sheboygan, Wis
KOVE Lander, Wyo.
Mid
Plat
Lenoit. N.Y
N.Y.N.Y.
$\mathbf{N} . \mathrm{Y}$.RI Lenoir. N.C.WOXF Oxford. N.CWNCO Ashland. 0 .WOUB Athens, Ohid
WIZE Soringfiold 0 hio
WSTV Steubenvile, Ohlo1000
1000KIHN Hugo, Okla.
KOCY Okla. City. Okia.KOCY Okia. City, Okia.250
1000
250
KLOO Corvallis, Oreo. KWVR Enterprise. Oreo.250
250
250
KAAB Hot Springs, Ark.$K B$
$K A$
$K B$KIHR Hood Rlver. Ores.
KFIR North Bend. Dreg.WCVI Connellsville, Pa.WSAJ Grove City. Pa.WSA1 Grove City. P
WKRZ OH City. Pa.KATA Arcata, Calif. Cal.
KWXY Cathedral City. Cal.
KMAK Fresno. Calif
KDOL Mojave, Calif.$\begin{aligned} 5000 & \text { KDAK Mojave, Calif. } \\ 1000 \mathrm{~K} & \text { KDOL } \\ 5000 \mathrm{~K} & \text { KSFE Needtes, Calif. }\end{aligned}$100
250
1000Obispor
CallfornlaWHAT Philadelphia, Pa.1000
$1000 d$

 KAOR Oroville. Cal.
 KATY San Luis ObispoWHAT Ph Reading, Pa,
WRAW Tyrone. Pa.
WTRN$\begin{array}{ll}\text { WBRE WIlkes-Barro, Pa, } & 1000 \\ \text { WWPA Willamsurt } & 1000\end{array}$
WWPA WIllamswort. Pa.
KMOP Tucson. Ariz.
KVEE COnway. Ark.
KVEE Conway, Ark.
WARN Ft. Plerce. Fla.
WWAB Lakeland. Fla.
WWAB Lakeland. F
WEBY Milton. Fia.

1000	WWAB Lakeland. Fia.
5000 WE	WE Milton. Fia.
500 d	WMEN Tallahassee, Fla.

 WMEN Tallahassee,
 WMLT Dublin. Ga.
1000 d WMLT Dublin. Ga.
5000 d
WEAW Evanston. Ill.
WEAW Evanston. Ill.
WRAM Monmouth. III.
WRRR Rockiord, II.
WRRR Rockiord. III.
WJPS Evansvilie. Ind.
WJPS Evansville. Ind,
WGRB Greenburg. Ind.
KWWL Waterloo, Iowa
KWWL Waterloo, Iow
KFH Wichita. Kans.
KFH Wichita. Kan
WYGD Corbin, Ky.
WXXX Hattiesturg, Miss.
KFSB Joplin Mo
KFSB Joplin. Mo.
KFBB Great Falls. Mont.
WMDR Morehead. Ky.
KVDL Lafayette. La.
KVDL Lafayette. La. Md. 5000 l
WCRB Waltham, Mass.
WCRB Waltham, M
WTRX Fint. Mich.
WTRX Filnt. Mich.
WLOL Minneapolis. Minn.
WLOL Minneapolis. Minn
WJPR Greenville. Miss.
WJPR Greenville. Miss.
WDAL Meridian. Miss.

WDAL Meridian. Miss.	1000 d
KUKU Willow Springs,	

 1000 d
 500 d
KTIF Tifton, Ga.
KAIN Nampa
250
1000
5000 KUKU Wlllow Springs,
5000
KGAK Gallup. N.Mex.
500 c
500 d
1000 d
KAIN Namua, Idaho
KPST Preston. Idaho
KTSL Burnett, Tex.
KTSL Burnett, Tex.
KAND Corsicana, Tox.
KAND Corsicana, Tox.
WAKE Atlanta, Ga.
KSET EI Paso. Tox.
KLBK Lubbeck, Tox.
WGAU Athens, Ga.
WGBQ Augusta, Ga.
KLBK Lubback, Tex.
KRBA Lufkin. Tex.
WOAA Cedartown, Ga.
KRBA Lufkin. Tex.
KPDN Pampa. Tex.
KOLE Port Arthur.
WBES Columbus, G
1000
1000 d
웅옹
KAOR Orovile. Cablispo,
Calfornla
1000
KIST Santa Bardille. Calif.
KOMY Watsonvill

$$
V
$$

$$
\begin{aligned}
& \text { D. } \\
& \text { Onio } \\
& \text { kIa. } \\
& \text { re. } \\
& \text { Pa. } \\
& \text { as. P. R } \\
& \text { S. C. } \\
& \text { Is, S. } \\
& \text { Tenn. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WUNA Aquadilla, P. F } \\
& \text { WOKE Charleston. s.C }
\end{aligned}
$$

WRHI Rock HIH, S.C
WSSC Sumter. S.C. WSSC Sumter. S.C.
KIJV Huron, S. D.$\begin{array}{ll}\text { KIJV Huron, S. D. S.Dak. } & 1000 \\ \text { KRSD Rapid City. S.Dn. } & 1000 \\ \text { WBAC Cleveland. Tenn. } & 1000\end{array}$WTAN Clearwater, Fla.
WROD Daytona Beh., Fia.WBAC Cleveland, Tenn.WKRM Columbia, Tonn

$$
\begin{aligned}
& \text { WSCR Seranton. Fa. } \\
& \text { WUNO Rio Pledras, P.R. }
\end{aligned}
$$$\begin{array}{lr}\text { WGRV Greenevilie. Tenn. } & 1000 \\ \text { WKGN Knoxvilie. Tenn. } & 1000\end{array}$WDSR Lake City. Fïa. $\quad 1000$ WKGN Knoxvilie. Tenn.

$$
\begin{aligned}
& \text { WUNO Rio Pledras, P.R. } \\
& \text { WOIC Columbia. S. C. }
\end{aligned}
$$WOSR Lake City. Fla.$\begin{array}{ll}\text { WLOK Nemphis, Tenn. } & 1000 \\ \text { WCDT Winchester. Tenn. } & 1000\end{array}$

KELO Sioux Falls, S.Dal

$$
\begin{aligned}
& \text { KELO Sioux Falls, S. } \\
& \text { WKIN Kİngsport, Tenn, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { S. Dak. } \\
& \text { n. }
\end{aligned}
$$$\begin{array}{ll}\text { WQXT Palm Beach. Fla. } 250 \\ \text { WSEB Sebring. Fla. } & 250 \\ \text { W }\end{array}$

WCDT Winchester. Tent
KWKC Abllene, Tex.
1a.WSEB Sebring. Fla.
dWGKR Perry, Fla.WOMS Lynchburg. Va.ex.
y.
v.
v.5000
1000
1000 d
5000
1000 d
1000 d

5000
KXRO Aberdeen. Wash.
0
KHIT Walla Waila. Wash.
WQMN Superior. Wis.
WFHR Wisconsin Raplds,
WAUC Wauchula. Fla.
WOMN Decatur, Ga
WOKA Douglas, Ga
WOKA Douglas. Ga.
WBRO Waynesboro. Ga.
WFHR Wisconsin Rapids. ${ }^{\text {Wis. }} 5000$
5000 d
1000 d
1330-225.4
WBMK West Polnt. Ga.
WBMK West Polnt, Ga.
KNUt Makawao, Hawaii
KLIX Twin Falls, Idaho
KLIXE Indlamapolis, Ind
KDLS Perry, lowa
KOKX Keokuk, Iowa
WFLA Scott City. Kans.
WDOC Prestonsburo, Ky,
WDKC Sulphur, La.
KUZN W. Monroe, La.WLDB Portland. MaineWKNR Dearborn. Mich10004
1000 d1000 d
1000 d
WROS Scottsboro. Ala.
WROS Scottsbora. Ala
KMOP Tucson. Ariz.
100Ia.1000
5000
5000 KLOM Lompoc, Cal.
5000
KFAC Los Angeles. Callf. KFAC Los Angeles. Ca500 d
1000 d1000d KAHR Redding, Callif.
500 d
WARN Ft. Plerce. Fla.
)
KPST Preston, Idaho
KSK! Sun Valley. Ida
WSOY Decatur. Iit.

WHITESS
 ட(OG)

Kc. Wave Length

W.P.

WRPB Warner Robins, Ga, 5000d Clarkston.
WAAP Peoria, II. WJBD Salem, lil. WIOU Kokomo, Ind. KRNT Des Moines, lowa WLOU Louisville. Ky. WSAB New Orleans, KDIO Ortanvilie. Minn WCMP Pine City, Minn WKOZ Kosciusko, Miss KCHR Charleston, Mo KITH Clinton. Mo
KBRX O'Neill, Nebr. WHWH Princeton. N.J
KABQ Albuquerque. N.M. WCBA Corning, N. Y
WBMT Black Mountaln, N.C.
WLLY wilson, N.C. KBMR Bismarek, N. D. WSLR Akron. 0 .
WCSM Celina, Ohio
WCHI Chllicothe, Ohio
KRHD Duncan. Okla. KTLQ Tahlequah. OkIa. KRVC Ashland, Oreg. WORK York. Pa
WWBR Windber, P s WDAR Darlington, S.C.
WGSW Greenwood, S.C WGSW Greenwood. S.C. KCAR Clarksvili, Tex. KTXJ Jasper. Tex.
KCOR San Antonlo. Tex. WBLT Bedford. V_{a}.
WFLS Fredericksburg, Va, WNVA Norton, Va. WAVY Portsmouth. Va.
WPDR Portage. Wis

$1360-220.4$

WWWB Jasper, Ala.

 WMFC Monroeville, Ala. WELR Roanoke, Ala, KRUX Glendale, Ariz. KLYR Clarksville. Ark. KFFA Holena, Ark. KFIV Modesto, Calif. KRCK Ridgecrest, Calif. KGB San Dlego, Callf. KDEY Boulder, Colo. WDRC Hartford, Conn.WOBS Jacksonville, Fla WOBS Jacksonville, Fla.
WKAT Miami Beach. Fla. WINT Winler Haven. Fla. WAZA Bainbridge, Ga. WLAW Lawrenceville. Ga. WIYN ROme, Ga. WIYN Rome, Ga,
WLBK Dekalb, III. WVMC A1t. Carmel. Ill. WGFA Watseka, Ili, KRCB Council Bluffs. Iowa KRCB Council Bluffs, lowa KXGI Ft. Madison. Iowa
KSCJ Sloux City, lowa KSCJ Sloux City, lowa WFLW Monticello. Ky . KOXI Mansfleld, La. KVIM New Jberia, La KTLD Tallulah. La, WLYN Lynn. Mass WKYO Caro, Mich WK MI Kalamazoo, Mich. KLRS Mountain Grove, Mo KWRV HicCook. Nebr. WNNJ Newton. N.J. WWBZ Vineland, N.J. WMOP Binghamton. N.Y. WMNS Olean. N.Y. WCHL Chapel HIII. N.C. KEYZ Williston. N. D.
WSAI Cincinnati, Ohio WWA Cincinnati, Ohio KUIK Hillshoro. Oree MCK McKeesport. Pa. WELP Pottsville, Pa. WELP Easley, S.C WNAM Lancaster, S.C. NAH Nashvilie, Tenn. KRAY Amarillo. Tex
KACT Andrews, Tex.

Kc. Wave Length W.P.
WPAR Parkersburg, W. Va. 1000 KFIZ F ond du Lac. Wis,
WOLB Marshineld. Wis.
WPFP Pert Fill, wis. wRCO Riehiand Center, wis KBB8 Buffalo, WYo.
KVOW Riverton, wyo

1460-205.4

WFMH Cultman, Ala, WPNX Phenix City, Ala. KZOT Marlanna, Ark. KCCL Paris. Ark. KTYM Inglewood, Calif.
KDON Salinas. Callf. KDON Sallnas. Callf.
KVRE Santa Rosit Call KVRE Santa Rosa, Callf. KYBN Colo. Sprgs., Colo. WBAR Bartow, Fia. Springs,
Florida WMBR Jacksonvilie, Fit. WOYX Buford, Ga. WPNX Columbus,
WROY Cermi, III. WROY Carmi, Ill.
WIXN Dixon, III. WRTL Rantoul, IIt. WOCH North Vernon. Ind.
K80 Oef Moines, Jowa
WRVK Mt. Vernon. K WAlt Baton Rouge, Le WEMD Easton, Md.
WBET Brockton, Miss. WBRN Big Rapids, Mieh. KOWA Hastings, Minn. KDMA Montevideo, Minn. WELZ Belzoni, Miss. WACY Moss Point, Mist KRNY St. Charles, Mo KENO Las Veges. Nev. WIIZ Mt. Holly, N.. WVoX Nev Rechalle, N.Y. $\begin{array}{r}5000 \mathrm{~d} \\ 5000 \\ \hline\end{array}$ WHEC Reehtster. N.Y. .Y. 5000 WRKB Kannapolis, N.C. WBNS Columbus, N.C. WPVL Painesvilio. Ohio KROW Dallas, Oree. WMBA Ambridge, Pa. WFMB Sarrisburi, Pa, WBCU Union. S.C. WEEN Lafeyette, Tenn KBRZ Freeport. Tex. KLLL Lubboek. Tox. WACO Waco. Tex.
WRAD Radford, Ve
KYAC Kirkland, Wash KimA Yaklma. Wash. WBUC Buckhannon, W.Va. WTMB Tomith, Wje
1470-204.0
WBLO Evergreen. Ala. KBMX Comingan. Calif KUTY Palmdale, Cal. KXOA Sacramento, Callf. WMMW Meriden, Conn WRBD Pompane Beach, FIs. 5000 WAAG Adel, Ga WDOL Athens, Ga. WRGA Romen, Ga WMPP Chiengo Heights, III. WMBD Peoria, III.

KTRI 8ioux City, lowa KARE Atchison. Kans. KLIB Liberal, Kans. KSAC Fart Knox, Ky
KTOL Farmersvilie, La. WLAM Lewiston Malne WJoY Salisbury, Md WSRO Mestminster, Md. lo00d WNBP Newburyport, Mass. 1000 d

Kc. WaveLength W.P.|Kc. Wave Length W.P.|Kc. Wave Length W.P.|Kc. Wave Length W.P.

KROB Robstown. Tex. KSTV Stephenville. Tot WAUX Waukesha. W
$1520-197.4$
KGHT Hollister, Callf. 500 KACY Port Hueneme. Calif. 10000 WTLN Apopke. Fla. WGNP Indian Rocks Beach WIXX Oakland Park, Fla. 1000 d WHOW Cllinton. Ill. WLUV Lovas Park. Ill.
WSVL Shelbyillo. Ind. WSVL Shelbyvillo. In KSIB Creston, lowa
WRSL Stanford, Ky. WRSL Stanford, Ky. KXKW Lafayette, La.
WKJR Muskegon His. Mich
WYNZ Ypsilantl. Mieh. KOLM Rochester, Minn.

VSLT Neean City s.c.

$$
\text { Pt. N. } \mathrm{J} \text {. }
$$

KHIP Albuquerque, N. Mex. 1000 d WKBW Buflalo. N. Y. WFYI Mineola. N. Y WBNO Bryan. Onio WKNT Canton. WKTO Kent. O WTTO Taledo, O KOMA Okls. City, Okla. KYMN Oregan city, Ore. WCHE West Chester, Pa. WRAT Rio Piedras, P. R. WIOD Elizabethton, Tenn.
1530-196.1
WLCB Moulton. Ala. KCAT Clne Blufi Art KCAT Pine Biun. Ark. KFBK Saeramento, Callf. WENG Englowood, Fit WTTI Oalton. Ga. KwLA Many, Kan
WTCR Chestertown. Md. WRPM Poplarville. Mist WTHM Lapeer, Wieh. WERX Wyoming. Mich. KSMM Shakopeor Minn KMAM Butlor, Mo. KNBE Lincoin. Neb. WCKY Cineinnatl, Ohle WMBT Shenandoah. Pe, WUPR Utuado, P. R. KGBT Harlingen. Tax. KCLR Ralls. Tox. WQVA Quantlec. Va. $1540-195.0$
$\begin{array}{llr}\text { KPOL Los Angeles, Callf. } & 50000 \\ \text { WBSR Pensacola. Fla. } & 1000\end{array}$ WBSR Pensacola. Fla.
WOGA Sylvester. Ga. WBNI Litehneld. III. WANL Boonville, Ind. WLOi Laperte ind KXEL Waterloo. Iowa KNEX MePhersan. Kans. KLKC Parsons, Kans.
WDON Wheaton. Md.
WMRR Marshall. Mich. WLEF Greanwood. KPTR Albany, N.Y WRPL Charlote. N.C.
WIFM Elkin. N.C.
WABU Cleveland. Ohio WN1O Niles, Ohio WBTC Uirichville, 0 KWF\& Eugenc. Ore. WIMJ Philadelphia. P
WPTS Pittston. Pa. WPME Punxsutawney, Pa. WAOK Newport. R.I. WBFJ. Woodbury, Tenn. KCUL Ft. Warth. Tex. KGBC Galveston. Tex. WRGM Richmond, Va. KBVU Bollevut. Wash. WTKM Hartford, wis.
1550-193.5
WBHM Birmingham. Ala. 50000 d WAAY Huntsvilie. Ala. WMOO Mobile. Ala. KFIF Tueson. Arlz. KXEX Fresno. Callif. 50000d KKHI San Fran., Callp. KOAB Arvade, Colo.
WEXT W. Hartford, Conn. 1000 d

500 d
250 d
50000
0000 d

500
10000
5000 d
1000 d 5000 d
$500 d$
1000 $\underset{~ W}{w}$ W
W
W
W
W
W
W
K
K
K
W
W w n 1000 d
250 d
1000 d J. 500 d 10000 S
500 d 5000
10000

2500
250
250

> colo. 1000d
-

000 d 1530 250 d 250 d 0000 000 d 1000

1000
1000 d
250d

1000 d 5000 d

500 d W

$$
\begin{aligned}
& 5000 \mathrm{~d} \\
& 50000
\end{aligned}
$$

5000 d
5000
$250 d$

1000d

50000

$\begin{array}{r}1000 \mathrm{~d} \\ 250 \\ \hline\end{array}$

250d
$250 d$1000dPa.
1000
500 d50000d50000
250 d
250
250 d
1000
250 d
250 d
50000
1000 d
000 d
000 d

WCNW Hamitton, O.
WTOO Toledo Ohio
 KPMC Bakersineld. Callf.
KICS willows. Cait. WBYS Canton, 111. WVAK Paoli, Ind. WRIN Rensselaer, Ind.
KSwI Council Blufs, WPHN Liberty. Ky. WOXR Padutah Ky.

$$
\begin{aligned}
& \mathbf{W} \\
& \mathbf{k} \\
& \hline
\end{aligned}
$$RSJ Elickasha. Okla.WAGL Lancaster, is.

 50000 WWGM Naneaster, S. C.
 WBOL Bolivar, tonn.
 KCAD Abilene, Tox.
 KHBR Hilisboro. Tex.
KGBR Port Lavaca. Tox.
KGUK Hoquiam. Wash.
KHOK Port washingh.
1570-191.1
WCRL Oneonta.
WhW Oneonta, Ala, 1000 d
$\begin{array}{ll}\text { KBRI Brinkley. Ark. } & \text { 250d } \\ \text { KBJT Fordyee. Ark. } & \text { 250d } \\ \text { KR }\end{array}$
KRSA Alisal. Callif.
KCACE Rod. Cal.
KLOV Loveland. Colo.1000 d
1000 d
500d WP PAP Auburndale, Fla.
1000 d
500 d
50000 d
1000 d
1000
WHOE Ward Ridge FII.WMES Ashburn, Ga.WEAO Collogo Park, GaWEAO Colloge Park,
WGSR Millen. Ga.wOKZ Allen. G
w500 d WAWK Kendallville. IndKHOK Hoquiam. Wash.$\quad 500 \mathrm{~d}$
w is.- 1000 d
w WABL Amite. La.
KMAR Winnsboro. L
KMAR Winnsboro. L
WMLO Boverly, Mass. WDEW Westheld, Mass
WMRP Flint. Mieh.
WFUR Grand Raplas.
250
50
1
1
50
10
100
10
10
1 500
100
1000
10
500
1000
$1000 d$
1000
2
1009
100
10
1

.

1000 d 10
wILA Danville, Va.
WPUV Pulaski, Va.
WTTN Watertown1000 d1000 d
5000 d5000 d
1000 d
1590-188.7WATM Atmare. Ala.
WBIB Centerville. A5000d
Midenigan
WONA WInana, Miss.KLEX Lexington. Mo.
WAF Amsterdam. N.Y.WAF8 Amsterdam. N.YWFLR Dundeo, N.Y.
WBUZ Fredania. N.Y.
WAPC Rivarhead N.Y.
WAPC Rivarhead, N.Y.
WTLK Taylorsvilie. N.C
WNCA Sile City, N.C.
WNCA Siler City, N.C.
WCLW Mansnold, 0.
WPTW Piqua. Ohle
KTAT Frederick. Okla
KTAT Frederick. 0
KOLS Pryor, 0 kla.
KWAY Forest Grove, Dre
KOHU Hermistan, Ores.
KOHU Hermistan. Ores.
WPGM Danvillo, Penn.
WBGX Doylestown. Pa.
WBUX Latrobe. Pa.
WGTGN Gantion 8.C.
WFGN Ganney. 8.C.
WIES Jahnston, 8.
WL8C Laris, S.C.
WCLE Cleveland. Tonn
500 d
1000 d
500 d
O웅유을
WTRB Ripley, Tonn.
K20L Farvell, Tox.
KVLO La Granes.
$\begin{array}{ll}\text { WBIB Centervilie, Ala, } & 5000 \\ \text { WVNA Tuscumbia, Ala. } & \quad 1000 \mathrm{~d} \\ \text { KPBA Pine Bluff, Ark. } & 5000 \text {. }\end{array}$
WBNA Tuscumbia, Ala. $\quad 5000$
KPBA Pine Bluff, Ark. $\quad \mathbf{y 0 0 0 0}$
KPA

KUDU Ventura, Cal. $\quad 10000$
$\begin{array}{ll}\text { KCIN Vietorvilie, Callf. } & 500 \mathrm{~d} \\ \text { WBRY Waterbury, Conn. } & 5000\end{array}$
WALG Albany, Ga.
WLFA Lalayotte, Ga.
WTGA Thomaston, Ga.
1000
5000
WLFA Lalayotte, Ga.
WTGA Thomaston. Ga.
WNMP Evanston.
5000 d
500 d
WNMP Evanston, III,
WAIK Galosburg. 111.
WGEE Indianapolis, Ind. 5000 d
WPCO Mt. Vornon. Ind. 500 d
K

1000 d	WPCO Mt. Vernon, Ind.	500 d
1000 d	KWEG Boene, lowa	
		1000
	KYGB Great Bend, Kans.	5000

1000 d KTER Terrell. Tox. $\quad 250 \mathrm{~d}$ KPRS Kasas City, Mo, loond
KWIC Salt Lake City, Utah
WSWV Ponnington Gap.
WYTI Rosky mount, VA.
$1580-189.2$
1000d WEYY Talladega, Ala.
KPCA Marked Tree. Ark.
KFCA Marked Tree. Ark.
a. 1000 d
dWERA Plainfoid N. N, J.
WAUB Auburn N.WEHE A Elmirn, Hoights.
WAHorsheads. N.Y.
WGGO Solamanea. N.Y.

1000 d	WC
50000	
250 W	
WN	
WN	

 500 d\(1000 d\)KMRE Anderson, Cil.\(1000 d\)
 $1000 d$KWIP Merced, Calif.
KDAY Santa Monica, Cal.
KHU Banta Rosa, Callf.WNCT Gratenvillo. N.C. $\mathbf{C .}$
WNOS High Point N.ns. 1000dwls.Ala.3000
0000
500 d
5000 5000
$500 d$

 WBRY Watorbury, Conn. 5000
 WOWY Clawiston, Fla, Beath,

 WILZ St. Petersburg Fiorida ioood
 WILZ St. Petersburg Boach
Florida

 WELE S. Daytona Beh.;

 ర్ర్రి 응
 250d 1000 d
00d

| d | W |
| :--- | :--- |$\begin{array}{ll}\text { K } & \text { K } \\ \text { KV } \\ \text { W }\end{array}$$\begin{array}{ll}\text { WLBN Lobanon. Ky. } & 1000 \mathrm{~d} \\ \text { KEVL White Castle. La. } & 1000 \mathrm{~d}\end{array}$

C. 100WJES Johnston. 8 .WCLE Cleveland. Tenn1000KHUM 8anta Rosa, Callf.
KPIK Colorado Spres., Colo.WNOS High Point. N.C.100
1000 d

1000 d	WNOS High Point. N.
W	
WAK Akron. Ohio	
WSRW Hillsboro. Ohi	
WHEN Henryetta. OkI	WSBP Chattachooches, Fla.WSRW Hilsbaro. Onio

KHEN Henryett. OkIa.
KTIL Tiliamook. Ores.
WZUM Carnesis. Pe.WZUM Carneole. Preg.
WCBG Chambersburg,1000dWWIL Ft. La uderdal fat, Fla.
WVGT Mount Oora. Fla.
WCCF Punta Gorda. Fla.

$$
\begin{aligned}
& \text { WBGS Sidell. La. } \\
& \text { KBEW Blue Earth, MInn. } \\
& \text { KOYX Joplin. Mo. }
\end{aligned}
$$

KaYX loplin. Mo.
MInn.

MEMITES

Kc. Wave Length
WTYM East Longmeadow, WAAM Ann Arbor Miehs. WTRU Muskegon, Mich. WKOL Clarksdale, Miss. WFFF Columbis. MIss. KATZ St. Louis. Mo. KTTN Trenton. Mo KNCY Nebraska City, Nebr. WMCR Oneida. Nebr. WLNG Onelda. N.Y. WXKW Troy, N.Y. WWRL Woodside. N.
W.P.

5000 d
1000
5000
1000 d
500 d
5000
500 d
500 d
500 d
1000 d
500
500 d
5000
5000

Kc.
Kc. Wave Length
WGIV Charlotto, N.C. WIDU Fayefteville. N.C. 1000 WHVL Hendersonville, N. C
W.P.|Kc. Wave Length
W.P.
500 d KOAK Carrington, N. D.
5000 WAQI Ashtabula, Ohio
500 d
WBLY Springheld. Ohlo
c.
500d WTTF TITn Ohio 1000d KWEL Midland, Tex.
500d KUSH Cushing, Okla.
KUSH Cushing, Okla.
00
KASH Eugene, Oreg.
KOH St. Helens, Ore.
5000 WHOL Allentown. Pa.

Canadian AM Stations by Frequency

Abbreviations: Kc., frequency in kilocycles; W.P., watt power; d, operates daytime only; n, operates nighttime only. Wavelength is given in meters.

Kc. Wave Length W.P.|Kc. Wave Length W.P.|Ke. Wave Length W.P.|Ke. Wave Length W.P.

CKBS St. Hyacinthe, Que. 250 CKwL La Sarre, Que. 1250-239.9
CBOF Ottawa. Ont CHSM Stainbere. Man. CHWO Oakvillo. Ont.

CKBL Matane, Que,
CKOM 8askatoon, Sask.
$1260-238.0$
CFRN Edmenton, Alta.
1270-236.1
CFGT St. Joseph d'Alma.
CHAT Medieine Hat. Alta 10.000 CHWK Chilliwatk. B.C. $\quad 10.000$ CJCB Sydney. N.S. $\quad 10.000$ 1280-234.2
CHIQ Hamilton. Ont. CJMS Montreal, Que.

CJSL Estevan, Sask. CKCV Quebee. Que.

1290-232.4 CFAM Altena, Man.

1300-230.6
CBAF Moneton. N.B. Jum Reqina. Sa
1310-228.9
CFGM Richmond HIII.
Ont. $\begin{array}{r}10.000 \mathrm{~d} \\ 2.500 \mathrm{n}\end{array} \mathbf{~}$
CHGB Ste.Anne-de-Pocatiere.
CKOY Ottawa, Ont.
10.000 d
5.000 n
1
10.000

50,000
ue 1.000 10.000

5.000

 50.000 d5.000 n 5.0000
1.000 10.000 d
$5,000 \mathrm{n}$

> 10.000 d
> 5.000 n
5.000
1000
\qquad
50.000

1320-227.1
CHQM Vaneouver, B.C. C/SO Sorel. Que.
CKEC Now Glasgow, N.S.
10,000
10.000 10,000 1.000 d KKW Kitehener, Ont $1340-223.7$

1390-215.7
CKLN Nelsun. B.C.
1400-214.2
CJFP Riviero du Loup.
iv. 10.000 d
$250 n$ CJQM Winnipeg. Man.
CFGB Geose Bay. Nfid.
CFOM Quebec, Que.
CFYK Yellowknife, N.W.T.
CHAD Amos. Que.
CHRD Drummondville, Que.
CJLS Yarmouth. N.S.
CKAR-I Parry Sound. On
CKOX Woodstock. Ont.
1350-222.1
CHOV Pembroke, Ont.
CJOC Dawson Croek, B.C.
CKEN Kentvilie, N.S.
Es Oshawa, Ont.
$1360-220.4$
CKBC Bathurst. N.B.
1370-218.8
CFLV Valleyffild, Que.
1380-217.3
CFDA Victoriaville. Que.
CKLC Kingston. Ont.

CKRN Rouyn, Que.
10.000
10.0000
10.000
10.000 d
5.000 n

1410-212.6
1.000
1.
1.
000

000
250
200 d
250 n
250
250
250
250
250
25

CKSW Swift Current, Sask. | 1.000 d |
| ---: |
| 250 n |

11480-202.6

CFMB Montreal, P.Q.
10,000
CF UN Vancouver, B.C CKSL London. Ont. $1420-211.1$
CJMT Chicoutimi, Que. CKPT Peterbarough, Ont.
1430-209.7
CKFH Toronte, Ont.
1440-208.2
CFCP Courtney, B.c.
CKPM Ottawa. Ont.
1450-206.8
CBG Gander. Nfld.
CFAB Windsor, N.S. CFJR Brookville, Ont

$\stackrel{C}{C}$
1.000

1.000
5.000
10.000

0
 C

C

1490-201.2
10.000 d

1500-199.9
1.000 1510 -199.1
10.000
$1540-195.0$

1550-193.5
$1560-192.3$

1570-191.1

1580-189.2

FMR Fort Simpsan. N.W.T. 25
100 $\begin{array}{ll}\text { KAD Middleton. N.S. } & 1.000 \\ \text { CKBM Montmagny, Que. } & 1.000\end{array}$ CKCR Kitehener, Ont. $\begin{array}{r}10.000 \mathrm{~d} \\ 5.000 \mathrm{n}\end{array}$ CFWB Campbell River, B.C. 250

CKAY Duncan. B. C. 1000
CKOT TIllsonburg, Ont. 1.000

CHFI Toronto, Ont. 50,000

CBE Windsar, Ont. $\quad 10.000$

CFRS Simeoe. Ont. 250d
$\begin{array}{ll}\text { CFOR Orillia, Ont. } & 10.000 \mathrm{~d} \\ \text { CHUB Nanaime. B.C. } & 10.00 \mathrm{n} \\ \text { CK } & 10.000\end{array}$
$\begin{array}{lll}\text { CHUB Nanaima. B.C. } & 10.000 \\ \text { CKLM Montreal. Que. } & 10.000\end{array}$
CBJChieoutini, Que. 10,000
CFOX Pointe Claire. Que. 10

CHOW Welland, Ont. \quad| $5,000 \mathrm{n}$ |
| :--- |

$1600-187.5$

U. S. Commercial Television Stations by States

Territories and possessions follow states. Chan., channel; C.L., call letters.

Location
 Danville Freeport Harrisburg Lasaline Mol Pooria

Quincy-Hannibal. Mo.
Roekford

Roek Island Springfield
 INDIANA

$\begin{array}{lr}\text { Evansvilie } & \text { WEHT } 50 \\ & \text { WFIE-TV } 14 \\ \text { Fort wayne } & \text { WAVW } \\ & \text { WKETV } 15 \\ & \text { Indianagolis } \\ & \text { WFBM-TV } \\ & \text { WISH.TV } \\ & \\ & \text { WLW-I } \\ & \end{array}$
Bloomington-Indianapolis

22
28

KANSAS

KENTUCKY	
Bowling Green	WKYLTV 13
Louisville	WHAS-TV il
	WAVE-TV 3
	WLKY-TV 32
Paducah	WPSD.TV 6

43
31
19

1
Bos
Gr
W

$$
\begin{aligned}
& 10 \\
& 39 \\
& \hline 18
\end{aligned}
$$

Locotion	C.L. Chan.
Scottshluff. Gering Superior	KSTF 10
NEVADA	
Las Vegas	KLAS.TV KORK-TV
	KSHO-TV 13
Reno	$\begin{aligned} & \text { KCRL } \\ & \text { KOLO-TV } \end{aligned}$

NEW HAMPSHIRE	
Wanchester WMUR-TV	
NEW JERSEY	

Alten Park (Detroit) WIMY 20
Bay City-Saginaw WNEM-TV

$$
\begin{gathered}
13 \\
4 \\
4
\end{gathered}
$$

O

MICHIGAN

$$
0
$$ Cheboyga

Winds
Detro
Flint
Grand Rapi
Lansing Marquette Onondaga
Saginaw Saginaw

Sault Ste, Mario Traverse City MINNESOTA | MiNNESOTA |
| :--- |
| $\begin{array}{l}\text { Alexandria } \\ \text { Astin } \\ \text { Oulut } \\ \text { KMMT }\end{array}$ |

Duluth-Sup
Mankato
Minneapolis.St. Paul
KOAL-TV
WOSM-TV

R
S
W
B
C
C

Roehester Minneapolis
St. Paul. Min
Walker MISSISSIPPI
$\begin{array}{ll}\text { Biloxi } & \text { WLOX.TV } \\ \text { Columbus } & \text { WCBI-TV } \\ \text { Grenneod }\end{array}$

Greenwood	WABG-TV
Jackson	WJTV

Laurel-Hattiesburg WDAMLBT
WOP
Moridian
WTOK.TV

Maridian
Tupela
MISSOURI
Cape Girardeau KFVS.TV 12
Columbia
Columbia
Hannibal-Quiney. III. KO
Jefferson City
joplin
Kansas City
Kir
Pop
St.
St.

Sed
Springitel

Albion
Grand Island
Hastings
Hay Springs
Hayes Center
Kearney. Holdrepe
Lineoln
North Platto
Omaha

KHQL-TV 8
KGIN-TV II
KHAS-TV 5
KHPL-TV 6
KOLNTTV 10
KNOP.TV 2
$\begin{aligned} & \text { KNOP.TV } 2 \\ & \text { KETV } \\ & \text { KWTV } 3\end{aligned}$

U. S. Educational Television Stations by States

Territories and possessions follow states. Chan., channel; C.L., call letters.

Canadian Television Stations by Cities

World-Wide Short-Wave Stations

The World-Wide Short Wave Stations section of White's Radio Log is, as its name implies, a log. that lists stations actually monitored by listeners in the United States, Canada and overseas. It is not intended to be a listing of all shortwave transmitters licensed as such listings contain numerous inactive transmitters, and low powered stations which are rarely heard by DX'ers. The stations listed here, therefore, are those most often reported and consistently heard during the past few months. Many have been monitored by DX Central the official

Radio-TV Experimenter monitoring post in New York City.

In our listings, a station or frequency marked with an asterisk (${ }^{*}$) indicates a nonbroadcast station or frequency. This might include aeronautical, maritime, military, or other type of transmission, either in regular AM or single sideband (SSB). In instances where many non-broadcast stations use the same frequency, we have given you a clue as to the type of stations to be found there, rather than pin down only one station.

Let Us Know. Listeners are invited to
submit their loggings to us for publication in the Shortwave section of White's Radio Log. Be sure to include the following information for each station you report: approximate frequency, callsign and/or station name, city and country, and time heard in Eastern Standard Time, 24 hour clock. Address your reports to: DX CENTRAL, White's Radio Log, c/o Radio-TV Experimenter, 505 Park Avenue, New York, N. Y. 1002?, U.S.A.

Time To Listen. All times shown in White's Radio Log are in the 24 hour EST clock system. For example, 0800 is $8: 00$ AM EST, 1200 is noon EST, 1800 is 6 PM EST, and so on. For conversion to other time zones, subtract 1 hour for CST (0800 EST is 7 AM CST), 2 hours for MST, 3 hours for PST.

The following abbreviations are used in our listings: BC-Broadcasting Company, Corporation, or System; E-Emissora; RRadio or Radiodiffusion; V-Voice or Voz.

TNX. We are indebted to the following DX'ers who added their loggings to those of DX C̣ENTRAL, the official Radio-TV ExPERIMENTER monitoring station in New York City, to bring you this month's listings:

George Matyaszek, Chicago, III.
Leonard Smith, Shadyside, Ohio
J. M. Harris, Vancouver, B. C.

Julian Sienkiewicz, Brooklyn, N. Y.
Tom Kneitel, New York, N. Y.
John Sigel, Worcester, Ohio
A. L. Kempton, St. Petersburg, Fla.

Susan Henriksen, Pt. Washington, N. Y.
Claire Campbell, Central Valley, Calif.
Ronald Flachac, Marshfield, Wisc.
Graham Chloupek, Oakland, Calif.
W. Wandrei, Burnaby, B. C.

David Carlson, Kirkwood, Mo.
R. J. Monson, Lancaster, Va.

Steve Shimko, Baltimore, Md.
David Weegar, Cooksville, Ont.
Bruce Zuckerman, Clark, N. J.
William Lee, Bethlehem, Pa.
Alvin R. Wilkinson, Ft. Braff, N. C.
R. J. Allen, Williams Lake, B. C.

Robert Bouvier, Providence, R. I.
John P. LeFave, Reading, Mass.
Tom Carpenter, Harrison, Mich.
Jimmy Davis, Lawton, Okla.
M. Herbach, Brooklyn, N. Y.

Allen Mattis, Stone Lake, Wisc. Frank B. Kennedy, Saratoga, Calif.
Joao Negrao, Santos, Brasil
John A. Czupowski, Cicero, Ill.
Nicholas Manusos, Lisle, III.
Mike Doherty, Willowdale, Ont.
Carl Stephan, Rochester, N. Y.
Bruce Kirkpatrick, Topeka, Kans.
Ronald Shopinski, Mt. Carmel, Pa.
Verne Horsley, APO N. Y. 09079
lawrence Whitehead, Wewoka, Okla.
Alfred V. Sander, Concord, Calif. (great report) N. S. Jortner, New York, N. Y.

Freq.	Call	Name	Location	EST	Freq.	Call	Name	Location	EST		
	VAK	Victoria* (marine emerg.)*	Victoria, B.C. various ship \& shore	0400	4798	XJA43		Brit. Columbia Prince Rupert. B.C.	2302		
				0430		XJD44	Prince Rupert		2315		
2410		$\overline{\mathrm{v}}$ Evangelique	Goroka, Papud Cap Hatien. Haiti		4811	XJD5 HCFA4	Terrace V. de Manabi	Terrace, B.C. Portoviejo.			
2482	KOW	Seattle*	Seattle. Wash.	0630 0510					5		
2514	WLC	Rogers City*	Rogers City, Mi	0023	4813	ZYH27	R. Iracem	Fortaleza, Brazil			
2590	VAF	Alert Boy*	Alert Bay B.C.	0755	4820	XEJG	E. Casa de la	Guadalajara. Mex			
2598	KFX	Astorio	Astoria Ore	0507	4825	ZYE7	R. Educadora	Parnaiba, Brazil	2145		
	KOX	Portlond*	Artis								
$\begin{aligned} & 3215 \\ & 3218 \end{aligned}$	VIW3	R. Tarawd ${ }_{\text {R. Sto. Domingo }}$	Tarawo Gilbert Is Santo Domingo. Dom. Rep.	0230	$4835$$4846$	ZYA	R. Roraima	Bod Vista, Brazil	2100		
									2030 2015		
$\begin{aligned} & 3240 \\ & 3260 \end{aligned}$	-	R. Brazzaville R. Naimey R. Belize		2330		CSA93		Ponta Deigada, Azores			
			Brazzavile, Naimey Niger Belize, Brit.	230	4880				1500		
						HIJP	Comerci	Santo Domingo.			
$\begin{aligned} & 3304 \\ & 3306 \\ & 3315 \end{aligned}$	VL8BD	Rhodesia B.C. R. Martinique	Daru, Papua Gwelo, Rhodesio Fort de France. Martinique	$\begin{aligned} & 0430 \\ & 1000 \end{aligned}$	$\begin{aligned} & 4890 \\ & 4926 \end{aligned}$	二	R. Dakar R. Equat.	Dakar, Senegal Santa Isabel. Sp.	0100		
				2000	$\begin{aligned} & 4954 \\ & 4965 \\ & 4967 \\ & 4970 \end{aligned}$	ZYE23	R. Educadora R. Santa Fe Kuwait BC R. Moqadiscio	Braganca, Brazil Bogota. Colombia Kuwait	204521501200		
3326	-	R. Tingo Mario R. Bechuanaland		2200							
3356			Gaberones, Bechuanoland	1030				Kuwait Mogadiscio,			
3366	CR7R	V. of GhanR. Pax	Accra, Ghana	17000130	72	-	Younde	Somalia Yoounde.	1245		
3910											
3952	MCM	BBC	London, England	1900				Cameroon	030		
3960		R. Pox	Beira, Mozambiqu	0130							
3975 3980	GRC	${ }_{\text {R }}^{\text {B }}$ C	Lendon. Eng	2030 1400	5014 5020	-	R. Universaria R. Naimey	La Paz, Bolivio Naimey, Niger	20030		
4372	WCM	Pittsburgh*	Pittsburgh, Pa	0830	5024		R. Centinel	Loia, Ecuador	2030		
4421	WLC	Rogers City*	Rogers City. Mich.	0023			del Sur				
4706		R. Progresso	Ecuador	2100	5025	-	R. Pax	Beira. Morambiqu			
4719	CR4AB	R.C. de Mindelo	oo Vicente,		5036		R. llo		2200		
			V_{e}	$\begin{array}{r} 1645 \\ 1830 \\ 1350 \end{array}$	5042	CRGRF	R. Club de BengelaR. du Togo	Benguela, Angolo	00451600		
$\begin{aligned} & 4756 \\ & 4775 \end{aligned}$	二	Fiii ls. BC R. Commercial	Nandi, Fiii ls. Angola		5047						
					5060	-	Catc	uito. Ecuador	2000		
							R. Liberdad	Clandestine $\begin{aligned} & \text { Anchorage, Alaska } 0530\end{aligned}$			
60 Meter Band- 4750 to $5060 \mathrm{Kc} / \mathrm{s}$					5566	KWAb KIL8 KKF8	Anchorage ${ }^{\text {a }}$	Anchorage, Alaska Miami, Fla.	0530 060		
							New Francisco. Cal. 2005 New Orleans, La. 1919 Mexico City, Mex. 1919				
				2300		$\begin{aligned} & 5574 \\ & 5619 \end{aligned}$			$\begin{aligned} & \text { KSF } \\ & \text { KKFB } \\ & \text { XACF } \end{aligned}$	San Francisco New Orleans ${ }^{\circ}$ Mexico City*	
4790	HRST	R. Primero de Mayo	Tequcialpo. Hond.								

Freq, Call	Name	Location	EST
9770 4VEH	Lav. Evangelique	Cap Hatien. Haiti	0630
9795	R. Prague	Prague, Czech.	. 2000
9833	R. Budapest	Budapest, Hungary	1930
9860	R. Peking	Peking. China	1300
9865 YDF6	V. of Indonesia	Jakarta, Indonesia	1200
9915 VUD	All India R.	Delhi, India	1515
9955	R. Peking	Peking. China	1500
11650	R. Peking	Peking. Chino	0430
11680 -	R. Damascus	Damascus, Syria	0830

25 Meter Band-11700 to $11975 \mathrm{Kc} / \mathrm{s}$

$11710 \overline{\text { vud }}$	R. Australia All India R. R. Brazzaville	Melbourne, Austr. Delhi, India Brazzaville, Congo	0145 0500 2300
11715 YDF2	V. of Indonesio	Jakarta, Indonesia	1200
	R. Nacional de Espana	Madrid, Spain	1800
11720 -	R. Athens	Athens, Greece	1245
11730	R. Nederland	Hilversum, Neth.	1555
	R. Tehron	Tehran, Iran	1500
11735	Moroccan BC	Tangier Morocco	1530
11740	V. of America	Monrovid, Liberia	1230
11760	R. Australia	Melbourne, Austr.	1745
11770	V. of America	Monrovia, Liberia	1500
11770 VUD	All India R.	Delhi, India	0500
11775 DMO	Deutsche Welle	Cologne, W. Ger,	1050
11780	R. Japan	Tokyo, Japan	2100
ZL3	New Zealand	Wellington, N.Z.	0140
11785 DM	Deutsche Welle	Cologne, W. Ger.	0230
11795 DMQ	Deutsche Welle	Cologne, W. Ger.	1010
$11800-$	R. Peking	Peking, China	0430
	R. Ceylon	Colombo, Ceyon	0930
11805 ZYZ36	R. Globo	Rio de Janeiro,	
11810 VUD	All India R	Brazil Delhi, India	1915 0830
	R. Lebanon	Beirut, Lebanon	1330
11825 BED69	V. of Free China	Taipei, Formosa	2150
	R. Papeete	Papeete. Tahiti	2230
11835 4VEH	LaV. Evangelique	Cap Hatien, Haiti	0630
	R. TV Algerienne	Algiers. Algeria	1700
11850 LLK	R. Norway	Oslo. Norway.	1104
11855	Disini Saudi Arabia	Jeddah. Saudi Arabia	1200
WRUL	R. N.Y. Worldwide	New York, N.Y.	1700
11860 BED45	V. of Free China	Taipei Formosa	2150
11874	Disini Saudi Arabia	Jeddah, Saudi Arabia	1200
11875 ETLF	R. V. of Gospel	Addis Ababa, Ethiopia	1200
WRUL	R. N.Y. Worldwide	New York, N.Y.	1515
11885 DMQ	Deutsche Welle	Cologne, W. Ger.	1010
	R. Sarandi	Montevideo. Uruguay	2235
11890 DMQ	Deutsche Welle	Cologne, W. Ger.	1210
11900	S. African BC	Capetown. S. Afr.	0500
11925 DMO		Cologne, W. Ger.	0345 1830
HLK6	V. of Free Kored	Seoul, Korea	1830
-	Windward I. BC	St. Georges, Grenada	1730
11940		Tokyo. Japan	0730
11950	Disini Saudi Arabia	Jeddah, Saudi Arabio	0300
PRL3	R. Min da Educ. e Cult.	Rio de Janeiro. Brazil	0500
11955 -	R. Nederland	Hilversum, Neth.	1230
$11990-$	R. Prague	Prague, Czech.	2000
12095 GRF	BBC	London, England	1300
13264 VFG	Gander	Gander, Nfld.	1226
15050	R. Liberdad	clandestine	0800
15100	Windward Is. BC	St	
		Grenada	1730
$\begin{aligned} & 15105 \text { VUD } \\ & 15060- \end{aligned}$	All India R. R. Peking	Delhi, Indio Peking, China	0500 0700

19 Meter Band- 15100 to $15450 \mathrm{Kc} / \mathrm{s}$

15110 ZL21
15115 E-JB
15125 HLK41
15135 -
15165 VUD
OZF7
15195 TAQ
New Zealand
Calling
R. Peking
V. of the Andes
V. of Free Korea
R. Japan
R. Havana
All India R.
V. Denmark
R. Damascus
R. Ankara

Wellington, N.Z. 2145
Peking, China 0430 Quito, Ecuador Seoul, Korea Tokyo, Japan Havana, Cuba Dellhi, India Copenhagen Den 0520 Damascus, Syria 1230 Ankara. Turkey 2230

Freq. 15220	$\begin{gathered} \text { Call } \\ \overline{\text { Wral }} \end{gathered}$
15225	VUD
15235	-
15275	DMQ
15230	ZL4
15340	-
15345	-
15370	
15380	CSA42
15425	
15440	WRUL
15445	-

Name	Location	EST
S. African BC	Capetown, S. Afr.	0500
R. N.Y. Worldwide	New York, N.Y.	0745
R. Australia	Melbourne. Austr.	2000
All India R.	Delhi, India	0830
R. Japan	Tokvo, Japan	0030
Deutsche Welle	Cologne, W. Ger.	0345
New Zealand	Wellington, N.Z.	1845
Calling		
R. Hovana	Havana, Cuba	1700
R. Athens	Athens, Greece	1245
R. Brazzaville	Brazzoville, Congo	1400
E. Nacional	Lisbon, Poot.	1350
R. Nederland	Hilversum, Neth.	1230
R. N.Y. Worldwide	New York, N. Y,	0700
R. Brazzaville	Brazzaville, Congs	2300

16 Meter Band-_ 17700 to $17900 \mathrm{Kc} / \mathrm{s}$

17695 GVP	BBC	London, England	0700
17720 -	R, Brazzaville	Brazzaville, Congo	0730
17725	R. Japan	Tokyo, Japan	0030
17730 WRUL	R. N.Y. Worldwide	New York, N,Y.	1000
17790 GSG	BBC	London, England	0700
17805 -	S. Afr. BC	Capetown, S. Afr.	0600
17835 -	R. Peking	Peking, China	0430
17840 WRUL	R. N.Y. Worldwide	New York, N,Y.	1115
17840	R. Australia	Melbourne. Austr.	2000
17845 DMQ	Deutsche Welle	Cologne, W. Ger.	0230
17855 -	R. Havana	Havana, Cuba	0930
VUD	All India R,	Delhi, India	0500
17875 WRUL	R. N.Y. Worldwide	New York, N.Y.	1000
17885 -	BBC	London, England	0930
17890 HCJB	V. of the Andes	Quito, Ecuador	1330
	V. of Free China	Taipei, Formosa	1030
17895 CSA66	E. Nacional	Lisbon, Port.	0900
17910	V. of Ghana	Accra, Ghana	0945
21500	R. Brazzaville	Brazzaville, Congo	1330
21530	V. of Ghano	Accra, Ghana	0900
21545	V, of Ghana	Accra, Ghana	0945
$21700=$	E. Nacional	Lisbon, Port	0940
21710 GVS	$B B C$	London, England	0930

"Red Fox to Blue Eagle, come in, Blue Eagle!'"

Electronics Goes
to your Heart
Continued from page 39

artificial kidney, says: "When we detach ourselves from emotional, symbolic and conventional notions, we realize the heart is a double pump with a fairly well-known output," and adds, "Should 'the only other alternative be death, one might prefer to have an artificial heart in the chest, even if some wires or thin tubes would have to come out of the chest wall to provide the power."

Assistant Versus Full-Time Hearts. Dr. Kolff has already kept dogs alive for hours with a total "heart" while Dr. Adrian Kantrowitz at Maimonides, applying an auxiliary or assistant heart-has kept his dogs alive for days, even a month.

The Kantrowitz assistant heart looks much like a flattened rubber ball with a double wall, the inner portion flexible so it can pulse like its human counterpart as air flows into the outer section. Both sections are made of dacron-reinforced Silastic 372, and pumped by a unit driven by air. Two teflon-coated stainless-steel electrodes are sutured to the heart and air-pumped from a portable bat-tery-driven pack worn on the dog's back. Dr. Kantrowitz' colleagues claim this "assistant" heart has kept dogs alive for weeks; one animal, 32 days!

Heart to Heart. The total-replacement "heart" Dr. Kolff has developed in Cleveland has kept his dogs alive and kicking 29 hours. This fantastic medical-electronic achievement is the end result of a long dismaying struggle. The first "heart" of the series, fashioned of plyvinyl chloride and powered by a reciprocating pump and an oscillating column of air was a dismal failure.

The next, made of polyurethane VC, a plastic thought to be kinder to blood cells, was powered by five solenoid magnets and its valve design improved. This "heart"-tested in January of 1959-only one month after the failure of the first-kept a dog alive two hours.

But this pump ran into troubles too. The magnets were clumsy, large and heavy. Then a Dutch engineer suggested trying pulsed current rather than AC or DC and with this current, it was possible to use solenoids onefifth the weight of the earlier ones.

Try Motors. Dr. Wolff's men then built tiny electromotors to fit into a chest cavity, and NASA engineers came up with the 64-
dollar answer-try a pump driven by air or gas. Two compressed-air-driven "hearts" were then built, one that pushed blood with a rolling diaphragm, the other pumping blood from a plastic sack compressed within a rigid plastic shell.
"It is the sack-type heart that has kept an animal alive as long as twenty-six hours," Dr. Kolff says. He feels the air-driven version may become humanly practical long before other "hearts." When air is pressed into the rigid housing surrounding the plastic sack of an air-driven heart, the heart pumps much like the human original.

One Coil to Another Coil. Another "heart"-one powered by two stationary coupling coils, the first coil within the chest wall, the second outside-has been developed at the University of Missouri. During the day, the patient would wear a battery pack. The pack's energy, transformed to high frequency by a transistorized oscillator, would set up a magnetic field that would charge the inner coil.

At night the patient would be free of the pack, and could draw power from coils set up around his bed. This unique system is already being tested by implanting coils in dogs. The dogs then live in cages where coils have been installed in the walls.

But the ultimate in artificial hearts, as some of our advanced doctors forecast, may well be powered by the body's own electrical currents. Already one doctor in New Jersey believes we can convert the body's mechanical energy into electrical energy.

Taking New Heart. With such amazing prospects for the future it is only natural to ask, how soon will we be able to order new hearts? Soon, say the experts.

Dr. Walton Lillelei believes, "Hearts will be artificially replaced in man within ten years-and that's a conservative estimate." While Dr. Kolff retorts, "I'll be disappointed if a synthetic heart does not replace the human heart within three years." And when the Doctor says that, a staff member smiles as he recalls the day they kept a calf alive 29 hours on an artificial heart: "In case you think we had only clinical life there, four people had their hands full keeping that 150 pounds of cow from getting off the table during those hours."

If the coming artificial heart adds that much spunk to man's disposition this writer would like to add her prediction to that of the famed Doctors': We are in for an exciting era ahead.

Snap Your TV Pic

Continued from page 52

Your photo dealer can help you select the correct lens for your camera.

Also, in using your viewfinder be careful of parallax. When you are in this close, your viewfinder may not be showing exactly what the film will record, and you will have to correct for this parallax in the mounting of your camera. Best bet is to adjust the tripod so that the camera lens is exactly centered on the screen determined by simple plumb line measurement.

For recording black-and-white television images, use a medium speed film like Kodak Verichrome Pan or Kodak Plus-X Pan Film with your lens opening set at $\mathrm{f} / 3.5$ and a shutter speed of $1 / 25$ - or $1 / 30$-second for a camera with between-the-lens shutter (the type most of us own). Use a lens opening of $\mathrm{f} / 6.3$ and shutter speed $1 / 10$-second for a camera with a focal plane shutter.

You'll get best results in black-and-white if the film is given about 50 per cent more development time than normal-either in your own darkroom or by a custom photofinisher. The extra processing cost will not raise the price more than 50 per cent-as a rule of thumb.

For recording from color television, you'll need a fast color film like Kodak Improved High Speed Ektachrome Film, Daylight Type, in a camera with between-the-lens shutter and a maximum lens opening of at least $f / 2.8$. With this film you will need a filter to absorb ultraviolet radiation from the color television tube-a Kodak Wratten 2B or Kodak Skylight Filter will work well. Use a shutter speed of $1 / 30$-second.

One more word of advice: Recording images from television can be fascinating, particularly of an historical event like a Met home run. Screen images change often and you'll have the urge to record every one.

Now, a note of caution: If your fascination carries over into photographing regu-larly-scheduled TV programs or commercials, the material you record may be copyrighted and, you may be violating the copyright by making pictures. You have to make that decision. But unless you are certain no copyright is involved, do not-under any circumstances-make any commercial use of pictures you may take from television for your own entertainment.

Replacement Guide

Continued from page 46
the unit's operation after replacement has been made. If the unit works properly without circuit parts overheating (cathode, plate and screen resistors in particular) all is well. However, if the unit does not function as it should, shows signs of overheating, or pops fuses, forget the substitution and obtain the exact replacement.

Note that some replacement parts are starred (*). These tubes have different heater currents than those they replace. Do not use these tube types in sets that have series connected filament circuits.

The Neophyte's Dx'er

Continued from page 43
how: For minor changes in frequency, from those originally covered by the DX'er, remove or add a few turns to L1. If you add turns the tuning range will be lowered in frequency. If you remove turns, the tuning range will increase in frequency. For major variations, the number of turns on both L. 1 and L. 2 will have to be changed, along with the tap on L1. The tap on coil L1 will be about $1 / 5$ to $1 / 4$ of the way to the ground end of the coil. Coil L2 will be about 15 to 25% of the turns on L1.

The DX'er can be made to cover the standard broadcast band by substituting a tapped ferrite antenna coil (such as the Lafayette 32G4108) for L.1. Coil L2 will be about 15 turns of No. 30 wire wound on top of the ferrite antenna coil.

In the modifications outlined above, some experimentation will be necessary to find the best position for the tap on L1, and the number of turns on coil L2.

Although the DX'er was meant to be used with high impedance (1 to 4 kilohm) headsets, enough output is obtained on strong signals to drive a small speaker. To use a speaker with the DX'er, connect the primary of a matching transformer such as the Lafayette 99G6201 (2-kilohm primary, 10 -ohm secondary) to jack J1. The secondary winding is connected to the speaker.

Crystal earphones can be used with the DX'er by connecting a 2.2 -kilohm, $1 / 2$-watt resistor in shunt with the terminals on J 1 . Now listen in to some good DX.

See the Stars, Moon, Planets Close Up!
$3^{\prime \prime}$ ASTRONOMICAL REFLECTING TELESCOPE
Photographers! Adapt your camern to this Scope for ex:
cellent Telephoto shots and fascinating photos of moonl
60 TO 180 POWERI Famaus
Mr. Palomar Typet an Unusual Buyl Mars. huge craters on the Moon. phases of Venue Equatorlal Mount with lock on hoth axes. Alum: inlzed and overcoated $3^{\prime \prime}$ diameter high-speed fiomeriryor. Telescope equipped vith a fox Finder Teleseope mounted Hded. Hardwooxl portable
itipod FREE with Scope: viunble STAR ENS" Dlus "HOW TO USE YOUR TELESCORE" BOOK. Stock No. 85,050.HP
$\$ 29.95$ Postpald
$41 /{ }^{\text {" Refiectling }}$ Telescope-up to 225 Power Stock No. 85,105-MP........................ . $\$ 79.50$ F.0.B. Superb 6" Reflector Telescope
Up to 576 Power. Equatorial mount and Pedestal Base. Stock No, 85,086.MP $\$ 199,50$ F.O.B.

BRILLIANT ELECTRONIC FLASH TUBES

 FOR PHOTOGRAPHERS \& MECHANICS (ubes, flled with Xenon gas, have glass envelopes with sealed eleetrode at each end. Mrd. by G. E. lmetrueltons inel.
Low voltage tube

Fingumpleter plications. Uperates for low energy repelitive hash ap-
 STOCK NO, 40,725 . MPh rate, $20-\mathrm{hr}$. alpprox. Ilfe. . $\$ 5.20$ Ppd. Portable photo equipment applications in covered reflectors or housings protecting user from contam, with hilgh volenge. Low opelaftnk capachtars. $2 h_{2}$ high x well diama mounted on alectrolytic iype $210^{\prime \prime}$ thlck warer base destoned to be crimped into meflector. Three
pins serve as solderims terminals. Typleal phoco flash mpplication uses pins serve solderins terminals. Typleal photo frash spplication une output. peak tumen outpu
STOCK NO. $40,726-\mathrm{HP}$. . $\$ 9.00 \mathrm{Ppd}$.
 MAKE YOUR OWN POWERFUL ASTRONOMICAL TELESCOPE Grind Your Own Astronomical Mirror Klua contuin mirror blank, lool, abrasives. diagonal mirror and eyeplece
lenses. You buid Instrments ransing jensen. You bulld tnstimments ranking
in value from $\$ 75.00$ to hundreds of
Stock No.
$70.008-\mathrm{HP}$ $70,004-\mathrm{HPP}$
$70,005-\mathrm{HP}$ $70,005-\mathrm{HP}$ $70.006-\mathrm{HP}$
$70.007-\mathrm{HP}$ Dlam.
$41 / 4^{\prime \prime}$
$6^{\prime \prime}$
$8^{\prime \prime}$
$10^{\prime \prime}$
$12^{1 / 3^{\prime \prime}}$
$3 / /^{\prime \prime}$
11
$13 / s^{\prime \prime}$
$13 / 4$
$21 / 4 "$ Price

BARGAIN! LONG \& SHORT WAVE ULTRAVIOLET LIGHT SOURCE

Smalll Lightweight! Portablel Most Powerful at the Price!
Newly developed for prospecting, mineral collecting. fuorescent mineral collecting, fuorescent
demonstrations, etc. Most powerdemonstrations, etc. Most power-
ful' source of long and short wave fult source of long and short wave
ultra-violet light in one compact home-or-field unit! One source produces short wave UV radiation with peak intensity of 2537 angstroms. Other source produces long wave UV with peak intensity of 3660 angstroms. Unit has rugxed all-metal housiag, special circuitry for battery conservation, easy access for replacing tubes. extra large fiters. Operates on house current or batteries. Hightweight, only 1 lb . E oz. Compact $51 / 2^{\prime \prime} \times 2^{\prime \prime} \times 81 / 2^{\prime \prime}$. Fully suarabteed 6 identifiet mineral syecimens included.
Stock No. 70,259.HP
$\$ 24.95$ Postpald BATTERY ADAPTER C
\$5.75 Postpald

MAIL COUPON for FRIE CATALOG "HP"

SOLVEPROBLEMSI TELL FORTUNESI PLAY GAMES!
ACTUAL MINIATURE VERSION

OF GIANT ELECTRONIC BRAINS Fascinating new nee-through model computes netunily solves problems teaches eomputer fundimentals. Adds, subtracts, multiplies,
fhifts, complements, carries. memorlzes. counts,
 plaktic parts eaxily arsembled. ${ }^{12} 2^{\prime \prime} \mathrm{x}^{3} \mathrm{a}^{2 / 2 \prime \prime} \mathrm{x}$ 32-page fnntruction brok covering operation. eompliter tankuage Stock No. 70,683-HP $\$ 5.00$ Postpald

EXPLORE THE WORLD OF "OP ART"

Fasclnating New

MOIRE' PATTERNS KIT

Fantastic Visual Effects!

 LImitless Applications.Now! Experiment with the amazing new tool of tomorrow. Basis of "OP ART" - latest rige sweeping the couniry in art, fashion, packaging industries. 1,000 s of uses for hobbyists, photographers, designers, hab and home expermplete introduction to this new technology in one simplified, inexpensive kit developed by Dr. Gerald Oster, Brooklyn Poly. Inst. sive kit developed by Dr. Gerabo clear acetate lantern slide Contains 8^{8} busic patterns on bosh clear acetate antern side ${ }^{1 / 4} \times 4^{\prime \prime}\left(.050^{\prime \prime}\right.$ thick) and $010^{\prime \prime}$ thick white Kromekote
size size ${ }^{1 / 4^{\prime \prime}} \times 4^{\prime \prime}{ }^{1 / 2} 1 / 4^{\prime \prime}$ (coated one side): (1) Coarse grnting. (2)
 65-line grating, (
lines, 5 -degrees, (5) Equalithmic spaced
circles. (6) Fresnel zone plate, (7) Sphere projection. (8) Cylinder projectlon; one plate, $3^{1 / 4)^{\prime \prime}} \times \mathrm{S}^{\prime \prime} 150$-dof screen on film; copy Dr. Oster's book. "The Science of Moire' Patterns," an authoritative Introduction to the fascinating world of moire
Stock No. $\mathbf{7 0 . 7 1 8}$-HP . $\$ 6.00$ Ppd. Stock No. 60462-HP-Same as above without book $\$ 4.00$ Ppd.
MOIRE' PATTERN ACCESSORY KIT. For udditional experlments. inel, metallic balloon, calcite, two kinds of difracting gratings, one-way mirror foil, polarizing materials, Ronchi rulings, assortments of lenses.
Stock No. 60,487-HP
$\$ 8.00$ Ppd.

Astonishing 3-Dimensional Color Effects
 NEW MULTI-LENS THERMOPLASTIC SHEETING 10,000 Parabolle Lenses Per Sq. Inch

Art or type appears to float or aink. . illusion of depth up to $3 / 4$ ". Accepts art work, silk screen painting, quality lithog: raphy. Used at World's Fair by Disney and Dall. Resists soilNATED SHEETS-MOIRE PATTERN. Stock Na. 70,728-HP, Translucent, colorless . . \$ 9.50 Postpald Stock No. 70,729-HP, Vacuum-metalized back, chrome colored
$\$ 12.50$ Postpaid
(Other sheets and sizes avallable)

RUGGED, LOW-PRICED
EXPERIMENTAL ELECTRO-MAGNET Honbyists instruetors and industrial lab men
will and this well-built Electro-Mngnet inval. uable. Demonstrate princlples of electromag.
nethem. Actually ilft 100 ibs, when powered by single 1 L/2V Hashlight battery, Eowered ments-lifing jower, magnetio fux ond mak netomotive force. atr kap, zrea of coninct.
retentlivity and field configuration. Unie include
 nagnet and yoke assembly, battery holder, leadn, dips and byobole Steel core and yoke precision ground for max. Hatness. About $21 / /^{\prime \prime}$

Instantly Copy and Measure Contours NEW MAGNETIC CONTOUR GAGE
Contour kage with magnetic mods-to-holder. link. oke, instantiy conforms to irregular shapes, instantly locks copled information arrd measures it
directly. 160 rods, arranged side by side to sllde directly. 160 rods, urranged side by side to silde
independenkly wlithin a permanent magnet nolder. Rods linked to holder py magmetic attraction, provides optimam sitding and gripping action. nlpping lever. Patented precedion tool unequalled for restoring repairims and duplicating wood and metal; making models samples. covering and molds; quality control; prototype transfer: floor and wall cation; maklng die-cut inserta for paper boxead wear; plastic fabriside (match) and outside (ht) profles whth slingle motion. Direct ins ing scalea for taktug both horlznemal and vertical measurements of podis ean be instanily realikned. Measurer end 20 aceuracy of $1 / 32^{\prime \prime}$. $23 / 4$ " high. Stainless and chrome:plated steel, tempered rodis have tapered ends. Overall meas. 5a/s 18 . x " fi" high s g/s" deeps. In Stock No, 60,507-HP

BUILD, EXPERIMENT, EXPLORE, DISCOVER WITH NRI CUSTOM-DESIGNED TRAINING KITS

BUILD YOUR OWN PHONE/CODE TRANSMITTER

This is just one of seven training kits programmed into NRI's Complete Communications course. You get actual practice in building your own crystal-controlled, phone/code transmitter and putting it on the air. You experiment with modulation, "clamping" circuits, key filters, other aspects of commercial transmitter operation. Can be put on the air simply by attaching an antenna and complies with FCC regulations. As with all NRI training kits, you get the most modern features and parts.

BUILD ACTUAL ANALOG COMPUTER CIRCUITS

Industry, business offices, the government and military all need trained Electronics Technicians. NRI's Industrial Electronics course prepares you. You progress through 10 carefully designed training kits, topping off your practical experience phase of training by experimenting with feedback control systems, analog computers and digital computer elements. You actually solve problems on this analog computer you build yourself. This is the practical, fast way to a good paying, career position.

BUILD A CUSTOM-ENGINEERED TELEVISION RECEIVER
Want to earn $\$ 3$ to $\$ 5$ an hour in spare time? Want your own parttime or full-time business? In Ra-dio-TV Servicing you learn to install, maintain, service radios, TV sets, hi-fi and stereo, other home Electronics equipment. In your training are eight training kits, including this complete, modern, slim-line TV receiver. You build it yourself, become familiar with components and circuits, learn servicing procedures . . . and earn extra money as you train. National Radio Institute, Washington, D.C.

SEE OTHER SIDE
Join the Thousands Who
Gained Success with NRI

"I am Frequency Coordinator for the 11th Naval Oistrict. The course, was
priceless." JENKINS, San Diego, Calif.

"Many thanks to NRI. 1 hold FCC License, am master control unsineer with KXIB-TV "M.L. WOOD, Fargn, M.D.
"I am a Senior En-
 ginaering Aide. Withaut MRI । would still be vork. Ing in a tactory at a lower standand of living." D. F. CON. RAD, Reseja, Calif.

BUSINESS REPLY MAIL
no postage stamp necessary if mailed in the united states

POSTAGE WILL BE PAID BY
NATIONAL RADIO INSTITUTE
3939 Wisconsin Avenue
Washington, D.C. 20016

FIRST CLASS
PERMIT
NO. 20-R
Woshington, D.C.

YOU GET MORE FOR YOUR MONEY FROM NRI
 Below is an example of material incleded in just one NRI course. Other NRI home study plans are equally complete.

AMERICA'S OLDEST AND LARGEST RADIO-TV, ELECTRONICS HOME-STUDY SCHOOL

Compare if you like. You'll find-as have so many thousands of others-that NRI training can't be beat. From the delivery of your first lessons in the remarkable, new Achievement kit sent the day we receive your enrollment, to "bite-size," eaşily read texts and carefully designed training equipment . . . NRI gives you more value. The picture above dramatically illustrates the material included in just one NRI course. Everything you see is included in low-cost NRI training. But NRI is more than kits and texts. It's also friendly, per-
sonal services which have made NRI a 50 year leader in the home study field.

Whatever your interest or need . . . whatever your education . . . there is an NRI instruction plan in Radio-TV Servicing, Electronics 0° Communications to fit your needs; tuition rates to fit your budget. Prove to yourself-your best home-study buy is NRI. Mail pestage-free card today. No salesman will call. NATION.AL RADIO INSTITUTE, Electronics Division, Washington, D.C. 20016.

SSEE OTHER SIDE

National Radio Institute, Electronics Division
Washington, D.C. 20016
5.085

Please send me your catalog. I have checked the field(s) of most interest to me. (No salesman will call) PLEASE PRINT.

Television-Radio Servicing
Complete Communications
\square Math for Electronics
\square Electronics for Automation
Industrial-Military ElectronicsAviation Communications
FCC License
\square Marine Communications
Basic Electronics
M Mobile Communications

> Name

Age \qquad

Address Zip Code \qquad

City \qquad State \qquad

[^0]: Specifications-Maximus 1
 Price-\$59.50
 Freq. range-45.20,000 cps
 Capacity- 15 watts
 2 speakers-woofer and tweeter
 Crossover-1900 cps.

[^1]: Specifications-Shure V-15
 Price- $\$ 62.50$ nel
 Tracking angle- 15 degrees
 Frequency output-20-20,000 cps
 Output voltage-6 millivolts/channel af 1000 cps of $5 \mathrm{~cm} / \mathrm{sec}$.
 Channel separation-Nominally 25 db at 1,000 cps, 20 db af $10,000 \mathrm{cps}$
 Bolance-within 2 db of each channel
 Impedance- $-47,000$ ohms per channel Tracking force- $3 / 4$ to $1 \frac{1}{2}$ grams

[^2]: PARTS LIST
 11, 12-Control box indicator lamp assemblies (Dialco Series 810B-432 [green] or equiv.) with GE No. 1133 or 1488 lomps for 6or 12 -volt systems, respectively
 L1, L2—Approximately 53 turns No. 18 solid enameled wire wound on reed switch coil forms. (See texi)
 51, 52-Electromagnetically actuated reed switches (GE-X7 or equiv.)
 S3-D.p.d.t. toggle switch
 TS1-3-lug screw terminal strip
 $1-51 / 4^{\prime \prime} \times 3^{\prime \prime} \times 21 / ⿷^{\prime \prime}$ oluminum chassis box (Bud 3006A or equiv.)
 1 - $1 / 2$-pound spool No. 18 plain enameled magnet wire (Allied 48T104)
 Misc.- $1 / 2$-inch metal tubing, silicone rubber sealant (GE RTV-type or equiv.), No. 18 or No. 16 stranded wire, panel marking, hordware, solder, etc.
 Estimoted cost: $\$ 6.00$
 Estimaled construction time: 3 hours (plus sealant curing and installation time)

[^3]: AT last! Bulld your own supersensitive light meter from complete kit with easy to follow instructions. Send $\$ 19.95$ to Kit Division. Sclence and Mechanics. 505 Division. Sclence and Mechanics. comPark Ave.i New York 22 . Money comten days for any reason

